Short-term Stock Price Prediction by Analysis of Order Pattern Images

Atsuki Nakayama, K. Izumi, Hiroki Sakaji, Hiroyasu Matsushima, T. Shimada, Kenta Yamada
{"title":"Short-term Stock Price Prediction by Analysis of Order Pattern Images","authors":"Atsuki Nakayama, K. Izumi, Hiroki Sakaji, Hiroyasu Matsushima, T. Shimada, Kenta Yamada","doi":"10.1109/CIFEr.2019.8759057","DOIUrl":null,"url":null,"abstract":"Predicting the price movements of stocks based on deep learning and high-frequency data has been studied intensively in recent years. Especially, limit order book which describes the supply-demand balance of the market is used as features of a neural network. However, these methods do not utilize the properties of market orders. On the other hand, this study encodes information of time and prices of orders into images. This encoding method can take advantage of these properties. Then, we apply machine learning methods, convolutional neural network (CNN) and logistic regression (LR), to order-based features to predict the direction of short-term price movements. The results show that the execution has the highest prediction power than the order and cancellation information. Moreover, the difference between CNN and LR are small and depends on kinds of stocks.","PeriodicalId":368382,"journal":{"name":"2019 IEEE Conference on Computational Intelligence for Financial Engineering & Economics (CIFEr)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Conference on Computational Intelligence for Financial Engineering & Economics (CIFEr)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIFEr.2019.8759057","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Predicting the price movements of stocks based on deep learning and high-frequency data has been studied intensively in recent years. Especially, limit order book which describes the supply-demand balance of the market is used as features of a neural network. However, these methods do not utilize the properties of market orders. On the other hand, this study encodes information of time and prices of orders into images. This encoding method can take advantage of these properties. Then, we apply machine learning methods, convolutional neural network (CNN) and logistic regression (LR), to order-based features to predict the direction of short-term price movements. The results show that the execution has the highest prediction power than the order and cancellation information. Moreover, the difference between CNN and LR are small and depends on kinds of stocks.
基于订单模式图像分析的短期股价预测
近年来,基于深度学习和高频数据的股票价格走势预测得到了广泛的研究。特别是用描述市场供需平衡的限价单作为神经网络的特征。然而,这些方法没有利用市场订单的特性。另一方面,本研究将订单的时间和价格信息编码成图像。这种编码方法可以利用这些属性。然后,我们将机器学习方法,卷积神经网络(CNN)和逻辑回归(LR)应用于基于订单的特征来预测短期价格走势的方向。结果表明,执行信息比顺序信息和取消信息具有最高的预测能力。此外,CNN和LR之间的差异很小,并且取决于股票的种类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信