Solving Time Domain Electromagnetic Problems using a Differentiable Programming Platform

Yanyan Hu, Yuchen Jin, Xuqing Wu, Jiefu Chen
{"title":"Solving Time Domain Electromagnetic Problems using a Differentiable Programming Platform","authors":"Yanyan Hu, Yuchen Jin, Xuqing Wu, Jiefu Chen","doi":"10.23919/USNC/URSI49741.2020.9321666","DOIUrl":null,"url":null,"abstract":"Deep-learning techniques have been playing an increasingly important role for scientific modeling and simulations. Recent advances in high-performance tensor processing hardware and software are also providing new opportunities for accelerated linear algebra calculations. In this paper, we exploit a trainable recurrent neural network (RNN) to formulate the electromagnetic propagation and solve the Maxwell's equations on one of the most state-of-the-art differentiable programming platforms—Pytorch. Due to the specific performance-focused design of PyTorch, the computation efficiency is substantially improved compared to Matlab. Moreover, RNN-based implementation possesses potential advantages of leveraging the differentiable programming platform for varied applications that iterate around forward modeling, for example, uncertainty quantification, optimization, and inversion. Numerical simulation demonstrates the effectiveness of our method.","PeriodicalId":443426,"journal":{"name":"2020 IEEE USNC-CNC-URSI North American Radio Science Meeting (Joint with AP-S Symposium)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE USNC-CNC-URSI North American Radio Science Meeting (Joint with AP-S Symposium)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/USNC/URSI49741.2020.9321666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Deep-learning techniques have been playing an increasingly important role for scientific modeling and simulations. Recent advances in high-performance tensor processing hardware and software are also providing new opportunities for accelerated linear algebra calculations. In this paper, we exploit a trainable recurrent neural network (RNN) to formulate the electromagnetic propagation and solve the Maxwell's equations on one of the most state-of-the-art differentiable programming platforms—Pytorch. Due to the specific performance-focused design of PyTorch, the computation efficiency is substantially improved compared to Matlab. Moreover, RNN-based implementation possesses potential advantages of leveraging the differentiable programming platform for varied applications that iterate around forward modeling, for example, uncertainty quantification, optimization, and inversion. Numerical simulation demonstrates the effectiveness of our method.
利用可微规划平台求解时域电磁问题
深度学习技术在科学建模和仿真中发挥着越来越重要的作用。高性能张量处理硬件和软件的最新进展也为加速线性代数计算提供了新的机会。在本文中,我们利用一个可训练的递归神经网络(RNN)在最先进的可微编程平台之一pytorch上制定电磁传播并求解麦克斯韦方程组。由于PyTorch特别注重性能的设计,与Matlab相比,计算效率有了很大的提高。此外,基于rnn的实现具有利用可微编程平台的潜在优势,可用于迭代前向建模的各种应用程序,例如,不确定性量化,优化和反演。数值仿真验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信