Usage of data mining techniques for analyzing network intrusions

Omar Bilalovic, D. Donko
{"title":"Usage of data mining techniques for analyzing network intrusions","authors":"Omar Bilalovic, D. Donko","doi":"10.1109/BIHTEL.2014.6987631","DOIUrl":null,"url":null,"abstract":"This paper presents the results of the analysis of the network intrusion detection systems using data mining techniques and anomaly detection. Anomaly detection technique is present for a while in the area of data mining. Previous papers that implement data mining techniques to detect anomaly attacks actually use well-known techniques such as classification or clustering. Anomaly detection technique combines all these techniques. They are also facing problem on the fact that many of the attacks do not have some kind of signature on network and transport layer, so it is not easy to train models for these type of attacks. Network dataset that was used in this paper is DARPA 1998 dataset created in MIT Lincoln Laboratory and is used worldwide for the network testing purposes.","PeriodicalId":415492,"journal":{"name":"2014 X International Symposium on Telecommunications (BIHTEL)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 X International Symposium on Telecommunications (BIHTEL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIHTEL.2014.6987631","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents the results of the analysis of the network intrusion detection systems using data mining techniques and anomaly detection. Anomaly detection technique is present for a while in the area of data mining. Previous papers that implement data mining techniques to detect anomaly attacks actually use well-known techniques such as classification or clustering. Anomaly detection technique combines all these techniques. They are also facing problem on the fact that many of the attacks do not have some kind of signature on network and transport layer, so it is not easy to train models for these type of attacks. Network dataset that was used in this paper is DARPA 1998 dataset created in MIT Lincoln Laboratory and is used worldwide for the network testing purposes.
使用数据挖掘技术分析网络入侵
本文介绍了利用数据挖掘技术和异常检测技术对网络入侵检测系统进行分析的结果。异常检测技术在数据挖掘领域已经出现了一段时间。以前的论文采用数据挖掘技术来检测异常攻击,实际上使用了众所周知的技术,如分类或聚类。异常检测技术结合了这些技术。同时也面临着许多攻击在网络和传输层没有某种签名的问题,因此这类攻击的模型训练并不容易。本文中使用的网络数据集是麻省理工学院林肯实验室创建的DARPA 1998数据集,在全球范围内用于网络测试目的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信