Transportation Mode Detection on Mobile Devices Using Recurrent Nets

Toan H. Vu, Le Dung, Jia-Ching Wang
{"title":"Transportation Mode Detection on Mobile Devices Using Recurrent Nets","authors":"Toan H. Vu, Le Dung, Jia-Ching Wang","doi":"10.1145/2964284.2967249","DOIUrl":null,"url":null,"abstract":"We present an approach to the use of Recurrent Neural Networks (RNN) for transportation mode detection (TMD) on mobile devices. The proposed model, called Control Gate-based Recurrent Neural Network (CGRNN), is an end-to-end model that works directly with raw signals from an embedded accelerometer. As mobile devices have limited computational resources, we evaluate the model in terms of accuracy, computational cost, and memory usage. Experiments on the HTC transportation mode dataset demonstrate that our proposed model not only exhibits remarkable accuracy, but also is efficient with low resource consumption.","PeriodicalId":140670,"journal":{"name":"Proceedings of the 24th ACM international conference on Multimedia","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 24th ACM international conference on Multimedia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2964284.2967249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

Abstract

We present an approach to the use of Recurrent Neural Networks (RNN) for transportation mode detection (TMD) on mobile devices. The proposed model, called Control Gate-based Recurrent Neural Network (CGRNN), is an end-to-end model that works directly with raw signals from an embedded accelerometer. As mobile devices have limited computational resources, we evaluate the model in terms of accuracy, computational cost, and memory usage. Experiments on the HTC transportation mode dataset demonstrate that our proposed model not only exhibits remarkable accuracy, but also is efficient with low resource consumption.
基于循环网络的移动设备传输模式检测
我们提出了一种在移动设备上使用递归神经网络(RNN)进行运输模式检测(TMD)的方法。提出的模型称为基于控制门的递归神经网络(CGRNN),是一个端到端模型,直接处理来自嵌入式加速度计的原始信号。由于移动设备的计算资源有限,我们根据准确性、计算成本和内存使用来评估模型。在HTC运输模式数据集上的实验表明,我们提出的模型不仅具有显著的准确性,而且具有低资源消耗的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信