Irreducible Markov Chain Monte Carlo Schemes for Partially Observed Diffusions

K. Kalogeropoulos, G. Roberts, P. Dellaportas
{"title":"Irreducible Markov Chain Monte Carlo Schemes for Partially Observed Diffusions","authors":"K. Kalogeropoulos, G. Roberts, P. Dellaportas","doi":"10.1109/NSSPW.2006.4378858","DOIUrl":null,"url":null,"abstract":"This paper presents a Markov chain Monte Carlo algorithm suitable for a class of partially observed non-linear diffusions. This class is of high practical interest; it includes for instance stochastic volatility models. We use data augmentation, treating the unobserved paths as missing data. However, unless these paths are transformed, the algorithm becomes reducible. We circumvent the problem by introducing appropriate reparametrisations of the likelihood that can be used to construct irreducible data augmentation schemes.","PeriodicalId":388611,"journal":{"name":"2006 IEEE Nonlinear Statistical Signal Processing Workshop","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Nonlinear Statistical Signal Processing Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSPW.2006.4378858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a Markov chain Monte Carlo algorithm suitable for a class of partially observed non-linear diffusions. This class is of high practical interest; it includes for instance stochastic volatility models. We use data augmentation, treating the unobserved paths as missing data. However, unless these paths are transformed, the algorithm becomes reducible. We circumvent the problem by introducing appropriate reparametrisations of the likelihood that can be used to construct irreducible data augmentation schemes.
部分观测扩散的不可约马尔可夫链蒙特卡罗格式
本文提出了一种适用于一类部分观测非线性扩散的马尔可夫链蒙特卡罗算法。这门课具有很高的实践性;它包括随机波动模型。我们使用数据增强,将未观察到的路径视为丢失的数据。然而,除非对这些路径进行变换,否则算法是可约的。我们通过引入适当的可用于构建不可约数据增强方案的可能性的重新参数化来规避这个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信