Authenticating IDS autoencoders using multipath neural networks

Raphaël M. J. I. Larsen, Marc-Oliver Pahl, G. Coatrieux
{"title":"Authenticating IDS autoencoders using multipath neural networks","authors":"Raphaël M. J. I. Larsen, Marc-Oliver Pahl, G. Coatrieux","doi":"10.1109/CSNet52717.2021.9614279","DOIUrl":null,"url":null,"abstract":"An Intrusion Detection System (IDS) is a core element for securing critical systems. An IDS can use signatures of known attacks, or an anomaly detection model for detecting unknown attacks. Attacking an IDS is often the entry point of an attack against a critical system. Consequently, the security of IDSs themselves is imperative. To secure model-based IDSs, we propose a method to authenticate the anomaly detection model. The anomaly detection model is an autoencoder for which we only have access to input-output pairs. Inputs consist of time windows of values from sensors and actuators of an Industrial Control System. Our method is based on a multipath Neural Network (NN) classifier, a newly proposed deep learning technique. The idea is to characterize errors of an IDS's autoencoder by using a multipath NN's confidence measure ${c}$. We use the Wilcoxon-Mann-Whitney (WMW) test to detect a change in the distribution of the summary variable ${c}$, indicating that the autoencoder is not working properly. We compare our method to two baselines. They consist in using other summary variables for the WMW test. We assess the performance of these three methods using simulated data. Among others, our analysis shows that: 1) both baselines are oblivious to some autoencoder spoofing attacks while 2) the WMW test on a multipath NN's confidence measure enables detecting eventually any autoencoder spoofing attack.","PeriodicalId":360654,"journal":{"name":"2021 5th Cyber Security in Networking Conference (CSNet)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 5th Cyber Security in Networking Conference (CSNet)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSNet52717.2021.9614279","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

An Intrusion Detection System (IDS) is a core element for securing critical systems. An IDS can use signatures of known attacks, or an anomaly detection model for detecting unknown attacks. Attacking an IDS is often the entry point of an attack against a critical system. Consequently, the security of IDSs themselves is imperative. To secure model-based IDSs, we propose a method to authenticate the anomaly detection model. The anomaly detection model is an autoencoder for which we only have access to input-output pairs. Inputs consist of time windows of values from sensors and actuators of an Industrial Control System. Our method is based on a multipath Neural Network (NN) classifier, a newly proposed deep learning technique. The idea is to characterize errors of an IDS's autoencoder by using a multipath NN's confidence measure ${c}$. We use the Wilcoxon-Mann-Whitney (WMW) test to detect a change in the distribution of the summary variable ${c}$, indicating that the autoencoder is not working properly. We compare our method to two baselines. They consist in using other summary variables for the WMW test. We assess the performance of these three methods using simulated data. Among others, our analysis shows that: 1) both baselines are oblivious to some autoencoder spoofing attacks while 2) the WMW test on a multipath NN's confidence measure enables detecting eventually any autoencoder spoofing attack.
使用多路径神经网络验证IDS自编码器
入侵检测系统(IDS)是确保关键系统安全的核心要素。IDS可以使用已知攻击的签名,也可以使用异常检测模型来检测未知攻击。攻击IDS通常是针对关键系统的攻击的切入点。因此,ids本身的安全性是必不可少的。为了保护基于模型的入侵防御系统,我们提出了一种对异常检测模型进行认证的方法。异常检测模型是一个我们只能访问输入输出对的自动编码器。输入由来自工业控制系统的传感器和执行器的值的时间窗口组成。我们的方法是基于多路径神经网络(NN)分类器,一种新提出的深度学习技术。这个想法是通过使用多路径NN的置信度度量${c}$来表征IDS自编码器的错误。我们使用Wilcoxon-Mann-Whitney (WMW)测试来检测汇总变量${c}$分布的变化,表明自编码器不能正常工作。我们将我们的方法与两条基线进行比较。它们包括在WMW测试中使用其他汇总变量。我们使用模拟数据来评估这三种方法的性能。其中,我们的分析表明:1)两个基线对一些自动编码器欺骗攻击都是不敏感的,而2)在多路径神经网络的置信度度量上的WMW测试最终能够检测到任何自动编码器欺骗攻击。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信