Compressed channel sensing: Is the Restricted Isometry Property the right metric?

A. Scaglione, Xiao Li
{"title":"Compressed channel sensing: Is the Restricted Isometry Property the right metric?","authors":"A. Scaglione, Xiao Li","doi":"10.1109/ICDSP.2011.6005010","DOIUrl":null,"url":null,"abstract":"In this paper we are concerned with the estimation of doubly-selective multi-path communication channels trough methods referred to as compressed channel sensing. Many authors have used the Restricted Isometry Property (RIP) as a guiding principle to select training to ensure good estimation performance. In this paper we discuss why this approach can be restrictive and why its entanglement with modeling aspects can be misleading. More importantly, we provide an alternative approach to classify inputs based on a new metric that we call localized coherence.","PeriodicalId":360702,"journal":{"name":"2011 17th International Conference on Digital Signal Processing (DSP)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 17th International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2011.6005010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

In this paper we are concerned with the estimation of doubly-selective multi-path communication channels trough methods referred to as compressed channel sensing. Many authors have used the Restricted Isometry Property (RIP) as a guiding principle to select training to ensure good estimation performance. In this paper we discuss why this approach can be restrictive and why its entanglement with modeling aspects can be misleading. More importantly, we provide an alternative approach to classify inputs based on a new metric that we call localized coherence.
压缩通道感知:受限等距属性是正确的度量吗?
在本文中,我们关注的是通过称为压缩信道感知的方法来估计双选择性多径通信信道。许多作者已经使用限制等距特性(RIP)作为指导原则来选择训练以确保良好的估计性能。在本文中,我们讨论了为什么这种方法可能是限制性的,以及为什么它与建模方面的纠缠可能会误导。更重要的是,我们提供了一种基于我们称之为局部相干性的新度量来分类输入的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信