Vikram Narayanan, Marek S. Baranowski, L. Ryzhyk, Zvonimir Rakamaric, A. Burtsev
{"title":"RedLeaf","authors":"Vikram Narayanan, Marek S. Baranowski, L. Ryzhyk, Zvonimir Rakamaric, A. Burtsev","doi":"10.1145/3317550.3321449","DOIUrl":null,"url":null,"abstract":"RedLeaf is a new operating system being developed from scratch to utilize formal verification for implementing provably secure firmware. RedLeaf is developed in a safe language, Rust, and relies on automated reasoning using satisfiability modulo theories (SMT) solvers for formal verification. RedLeaf builds on two premises: (1) Rust's linear type system enables practical language safety even for systems with tightest performance and resource budgets (e.g., firmware), and (2) a combination of SMT-based reasoning and pointer discipline enforced by linear types provides a unique way to automate and simplify verification effort scaling it to the size of a small OS kernel.","PeriodicalId":224944,"journal":{"name":"Proceedings of the Workshop on Hot Topics in Operating Systems","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Workshop on Hot Topics in Operating Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3317550.3321449","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
RedLeaf is a new operating system being developed from scratch to utilize formal verification for implementing provably secure firmware. RedLeaf is developed in a safe language, Rust, and relies on automated reasoning using satisfiability modulo theories (SMT) solvers for formal verification. RedLeaf builds on two premises: (1) Rust's linear type system enables practical language safety even for systems with tightest performance and resource budgets (e.g., firmware), and (2) a combination of SMT-based reasoning and pointer discipline enforced by linear types provides a unique way to automate and simplify verification effort scaling it to the size of a small OS kernel.