Aspect Based Sentimen Analysis Opini Publik Pada Instagram dengan Convolutional Neural Network

Muhammad Arief Rahman, Herman Budianto, Esther Irawati Setiawan
{"title":"Aspect Based Sentimen Analysis Opini Publik Pada Instagram dengan Convolutional Neural Network","authors":"Muhammad Arief Rahman, Herman Budianto, Esther Irawati Setiawan","doi":"10.52985/insyst.v1i2.83","DOIUrl":null,"url":null,"abstract":"Internet sebagai sarana informasi dan komunikasi sudah sangat dikenal di kalangan masyarakat dalam menawarkan kemudahan dan fleksibilitas yang cukup memadai ketika menjadi media. Oleh karena itu opini publik terhadap Operator Telekomunikasi merupakan hal yang sangat penting untuk dijadikan patokan. Namun, untuk mengevaluasi umpan balik online itu, bukan masalah sederhana. Kadang-kadang ketika menganalisis ulasan online yang berkembang pesat ini, menjadi sulit untuk mengkategorikan apakah opini pelanggan puas atau tidak puas terhadap produk dan layanan. Selain itu, sebagai bagian dari peningkatan kualitas mereka, organisasi seperti jasa ini perlu mengklasifikasikan aspek produk dan layanan yang paling disukai pelanggan. Deep Learning adalah area baru dalam penelitian Machine Learning, yang telah diperkenalkan dengan tujuan menggerakkan Machine Learning lebih dekat dengan salah satu tujuan aslinya yaitu Artificial Intelligence. Deep Learning adalah tentang belajar beberapa tingkat representasi dan abstraksi yang membantu untuk memahami data seperti gambar, suara, dan teks. Convolutional Neural Network adalah salah satu contoh metode Deep Learning. Metode Convolutional Neural Network diharapkan dapat digunakan dalam pengimplementasian opini publik untuk keperluan data training yang dikumpulkan dari beragam data yang dianotasikan kelas sentimennya secara otomatis. Hasil dari penelitian menunjukkan dari 4 aspek dan 3 sentimen maka didapatkan nilai rata-rata precision, recall, dan f1-score adalah precision  97.6%, recall 84%, f1-score 90.3%. Bisa disimpulkan score representation ini dapat digunakan untuk klasifikasi sentimen.","PeriodicalId":183705,"journal":{"name":"Journal of Intelligent System and Computation","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent System and Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52985/insyst.v1i2.83","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Internet sebagai sarana informasi dan komunikasi sudah sangat dikenal di kalangan masyarakat dalam menawarkan kemudahan dan fleksibilitas yang cukup memadai ketika menjadi media. Oleh karena itu opini publik terhadap Operator Telekomunikasi merupakan hal yang sangat penting untuk dijadikan patokan. Namun, untuk mengevaluasi umpan balik online itu, bukan masalah sederhana. Kadang-kadang ketika menganalisis ulasan online yang berkembang pesat ini, menjadi sulit untuk mengkategorikan apakah opini pelanggan puas atau tidak puas terhadap produk dan layanan. Selain itu, sebagai bagian dari peningkatan kualitas mereka, organisasi seperti jasa ini perlu mengklasifikasikan aspek produk dan layanan yang paling disukai pelanggan. Deep Learning adalah area baru dalam penelitian Machine Learning, yang telah diperkenalkan dengan tujuan menggerakkan Machine Learning lebih dekat dengan salah satu tujuan aslinya yaitu Artificial Intelligence. Deep Learning adalah tentang belajar beberapa tingkat representasi dan abstraksi yang membantu untuk memahami data seperti gambar, suara, dan teks. Convolutional Neural Network adalah salah satu contoh metode Deep Learning. Metode Convolutional Neural Network diharapkan dapat digunakan dalam pengimplementasian opini publik untuk keperluan data training yang dikumpulkan dari beragam data yang dianotasikan kelas sentimennya secara otomatis. Hasil dari penelitian menunjukkan dari 4 aspek dan 3 sentimen maka didapatkan nilai rata-rata precision, recall, dan f1-score adalah precision  97.6%, recall 84%, f1-score 90.3%. Bisa disimpulkan score representation ini dapat digunakan untuk klasifikasi sentimen.
互联网作为一种信息和沟通工具,在媒体提供足够的便利和灵活性方面,是众所周知的。因此,公众对电信运营商的意见是至关重要的。然而,评估在线反馈不是一件简单的事情。有时,在分析这些快速增长的在线评论时,很难对客户的产品和服务的看法进行分类。此外,作为提高其质量的一部分,像本服务这样的组织需要对最受客户欢迎的产品和服务的各个方面进行分类。深度学习是机器学习研究中的新区域,所引进的目的是推动机器学习更接近原始的目的之一就是人工情报。深度学习是学习几种表现和抽象层次,有助于理解图片、声音和文本等数据。神经连接网络是深度学习方法的一个例子。神经连接网络的方法预计将用于实现公众舆论,以便从自动转换情感类的各种数据中收集培训数据。研究表明,从4个方面和3种观点中,你得到的准确率是97% 6%,而f1分数是84%,f1分数是90.3%。你可以推断出分数代表可以用于情绪分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信