TinderAI: Support System for Matching AI Algorithms and Embedded Devices

Matteo Francobaldi, A. D. Filippo, Andrea Borghesi, Nikola Pizurica, Igor Jovančević, Tim Llewellynn, Miguel de Prado
{"title":"TinderAI: Support System for Matching AI Algorithms and Embedded Devices","authors":"Matteo Francobaldi, A. D. Filippo, Andrea Borghesi, Nikola Pizurica, Igor Jovančević, Tim Llewellynn, Miguel de Prado","doi":"10.32473/flairs.36.133100","DOIUrl":null,"url":null,"abstract":"\n \n \nArtificial Intelligence (AI) is becoming increasingly important and pervasive in the modern world. The widespread adoption of AI algorithms is reflected in the extensive range of HW devices on which they can be deployed, from high-performance computing nodes to low-power embedded devices. Given the large set of heterogeneous resources where AI algorithms can be deployed, finding the most suitable device and its con- figuration is challenging, even for experts. \nWe propose a data-driven approach to assist AI adopters and developers in choosing the optimal HW resource. Our approach is based on three key elements: i) fair benchmarking of target AI algorithms on a set of hetero- geneous platforms, ii) creation of ML models to learn the behaviour of these AI algorithms, and iii) support guidelines to help identify the best deployment option for a given AI algorithm. We demonstrate our approach on a specific (and relevant) use case: Deep Neural Net- work (DNN) inference on embedded devices. \n \n \n","PeriodicalId":302103,"journal":{"name":"The International FLAIRS Conference Proceedings","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International FLAIRS Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32473/flairs.36.133100","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial Intelligence (AI) is becoming increasingly important and pervasive in the modern world. The widespread adoption of AI algorithms is reflected in the extensive range of HW devices on which they can be deployed, from high-performance computing nodes to low-power embedded devices. Given the large set of heterogeneous resources where AI algorithms can be deployed, finding the most suitable device and its con- figuration is challenging, even for experts. We propose a data-driven approach to assist AI adopters and developers in choosing the optimal HW resource. Our approach is based on three key elements: i) fair benchmarking of target AI algorithms on a set of hetero- geneous platforms, ii) creation of ML models to learn the behaviour of these AI algorithms, and iii) support guidelines to help identify the best deployment option for a given AI algorithm. We demonstrate our approach on a specific (and relevant) use case: Deep Neural Net- work (DNN) inference on embedded devices.
TinderAI: AI算法与嵌入式设备匹配的支持系统
人工智能(AI)在现代世界中变得越来越重要和普遍。从高性能计算节点到低功耗嵌入式设备,人工智能算法的广泛采用反映在它们可以部署的广泛的硬件设备上。考虑到人工智能算法可以部署的大量异构资源,找到最合适的设备及其配置是具有挑战性的,即使对专家来说也是如此。我们提出了一种数据驱动的方法来帮助人工智能采用者和开发人员选择最佳的硬件资源。我们的方法基于三个关键要素:i)在一组异构平台上对目标人工智能算法进行公平的基准测试,ii)创建ML模型以学习这些人工智能算法的行为,以及iii)支持指南以帮助确定给定人工智能算法的最佳部署选项。我们在一个特定的(和相关的)用例上展示了我们的方法:嵌入式设备上的深度神经网络(DNN)推理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信