Efficient sampling of protein folding pathways using HMMSTR and probabilistic roadmaps

Y. Girdhar, C. Bystroff, Srinivas Akella
{"title":"Efficient sampling of protein folding pathways using HMMSTR and probabilistic roadmaps","authors":"Y. Girdhar, C. Bystroff, Srinivas Akella","doi":"10.1109/CSBW.2005.59","DOIUrl":null,"url":null,"abstract":"We present a method for constructing thousands of compact protein conformations from fragments and then connecting these structures to form a network of physically plausible folding pathways. This is the first attempt to merge the previous successes in fragment assembly methods with probabilistic roadmap (PRM) methods. Previous PRM methods have used the knowledge of the true structure to sample conformational space. Our method uses only the amino acid sequence to bias the conformational sampling. Conformational sampling is done using HMMSTR, a hidden Markov model for local sequence-structure correlations. We then build a PRM graph and find paths that have the the lowest energy climb. We find that favored folding pathways exist, corresponding to deep valleys in the energy landscape. We describe the pathways for three small proteins with different secondary structure content in the context of a folding funnel model.","PeriodicalId":123531,"journal":{"name":"2005 IEEE Computational Systems Bioinformatics Conference - Workshops (CSBW'05)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2005 IEEE Computational Systems Bioinformatics Conference - Workshops (CSBW'05)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSBW.2005.59","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We present a method for constructing thousands of compact protein conformations from fragments and then connecting these structures to form a network of physically plausible folding pathways. This is the first attempt to merge the previous successes in fragment assembly methods with probabilistic roadmap (PRM) methods. Previous PRM methods have used the knowledge of the true structure to sample conformational space. Our method uses only the amino acid sequence to bias the conformational sampling. Conformational sampling is done using HMMSTR, a hidden Markov model for local sequence-structure correlations. We then build a PRM graph and find paths that have the the lowest energy climb. We find that favored folding pathways exist, corresponding to deep valleys in the energy landscape. We describe the pathways for three small proteins with different secondary structure content in the context of a folding funnel model.
利用HMMSTR和概率路线图对蛋白质折叠途径进行有效采样
我们提出了一种方法,构建数以千计的紧凑的蛋白质构象的片段,然后连接这些结构,形成一个网络的物理合理的折叠途径。这是第一次尝试将之前成功的片段组装方法与概率路线图(PRM)方法合并。以前的PRM方法是利用真实结构的知识对构象空间进行采样。我们的方法只使用氨基酸序列对构象取样进行偏置。构象抽样是使用HMMSTR进行的,这是一种用于局部序列-结构相关性的隐马尔可夫模型。然后,我们建立一个PRM图,并找到具有最低能量爬升的路径。我们发现存在有利的折叠路径,对应于能量景观的深谷。我们在折叠漏斗模型的背景下描述了具有不同二级结构含量的三种小蛋白质的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信