Data Clustering Using Online Variational Learning of Finite Scaled Dirichlet Mixture Models

Hieu Nguyen, Meeta Kalra, Muhammad Azam, N. Bouguila
{"title":"Data Clustering Using Online Variational Learning of Finite Scaled Dirichlet Mixture Models","authors":"Hieu Nguyen, Meeta Kalra, Muhammad Azam, N. Bouguila","doi":"10.1109/IRI.2019.00050","DOIUrl":null,"url":null,"abstract":"With a massive amount of data created on a daily basis, the ubiquitous demand for data analysis is obvious. Recent development of technology has made machine learning techniques applicable to various problems. In this paper, we emphasize on cluster analysis, an important aspect of data analysis. In other words, being able to automatically discover different groups containing similar data is crucial for further information retrieving and anomaly detection tasks. Thus, we propose an online variational inference framework for finite Scaled Dirichlet mixture models. By efficiently handling large scale data, online approach is capable of enhancing the scalability of finite mixture models for demanding applications in real time. The proposed method can simultaneously update the model's parameters and determine the optimal number of components without the complex computation of conventional Bayesian algorithm. The effectiveness of our model is affirmed with challenging problems including spam detection and image clustering.","PeriodicalId":295028,"journal":{"name":"2019 IEEE 20th International Conference on Information Reuse and Integration for Data Science (IRI)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 20th International Conference on Information Reuse and Integration for Data Science (IRI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI.2019.00050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

With a massive amount of data created on a daily basis, the ubiquitous demand for data analysis is obvious. Recent development of technology has made machine learning techniques applicable to various problems. In this paper, we emphasize on cluster analysis, an important aspect of data analysis. In other words, being able to automatically discover different groups containing similar data is crucial for further information retrieving and anomaly detection tasks. Thus, we propose an online variational inference framework for finite Scaled Dirichlet mixture models. By efficiently handling large scale data, online approach is capable of enhancing the scalability of finite mixture models for demanding applications in real time. The proposed method can simultaneously update the model's parameters and determine the optimal number of components without the complex computation of conventional Bayesian algorithm. The effectiveness of our model is affirmed with challenging problems including spam detection and image clustering.
有限尺度Dirichlet混合模型的在线变分学习数据聚类
由于每天都会产生大量的数据,因此对数据分析的需求无处不在。最近技术的发展使机器学习技术适用于各种问题。在本文中,我们着重于聚类分析,这是数据分析的一个重要方面。换句话说,能够自动发现包含相似数据的不同组对于进一步的信息检索和异常检测任务至关重要。因此,我们提出了一个有限尺度Dirichlet混合模型的在线变分推理框架。在线方法通过有效地处理大规模数据,能够提高有限混合模型的可扩展性,以满足实时应用的要求。该方法可以同时更新模型参数和确定最优组件数,省去了传统贝叶斯算法的复杂计算。通过垃圾邮件检测和图像聚类等具有挑战性的问题,验证了该模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信