A NoSQL Approach for Aspect Mining of Cultural Heritage Streaming Data

Gerasimos Vonitsanos, Andreas Kanavos, Alaa Mohasseb, D. Tsolis
{"title":"A NoSQL Approach for Aspect Mining of Cultural Heritage Streaming Data","authors":"Gerasimos Vonitsanos, Andreas Kanavos, Alaa Mohasseb, D. Tsolis","doi":"10.1109/IISA.2019.8900770","DOIUrl":null,"url":null,"abstract":"Aspect mining constitutes an essential part of delivering concise and, perhaps more importantly, accurately tailored cultural content. With the advent of social media, there is a data abundance so that analytics can be reliably designed for ultimately providing valuable information towards a given product or service. Naturally representing and efficiently processing a large number of opinions can be implemented with the use of streaming technologies. Big data analytics are especially important in the case of cultural content management where reviews and opinions may be analyzed in order to extract meaningful representations. In this paper, a NoSQL database method for aspect mining of a cultural heritage scenario by taking advantage of Apache Spark streaming architecture is presented.","PeriodicalId":371385,"journal":{"name":"2019 10th International Conference on Information, Intelligence, Systems and Applications (IISA)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 10th International Conference on Information, Intelligence, Systems and Applications (IISA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IISA.2019.8900770","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Aspect mining constitutes an essential part of delivering concise and, perhaps more importantly, accurately tailored cultural content. With the advent of social media, there is a data abundance so that analytics can be reliably designed for ultimately providing valuable information towards a given product or service. Naturally representing and efficiently processing a large number of opinions can be implemented with the use of streaming technologies. Big data analytics are especially important in the case of cultural content management where reviews and opinions may be analyzed in order to extract meaningful representations. In this paper, a NoSQL database method for aspect mining of a cultural heritage scenario by taking advantage of Apache Spark streaming architecture is presented.
文化遗产流数据方面挖掘的NoSQL方法
方面挖掘是传递简洁的,也许更重要的是,准确裁剪的文化内容的重要组成部分。随着社交媒体的出现,有大量的数据,因此可以可靠地设计分析,最终为给定的产品或服务提供有价值的信息。使用流媒体技术可以实现对大量意见的自然表示和有效处理。大数据分析在文化内容管理的情况下尤为重要,在这种情况下,为了提取有意义的表示,可能会分析评论和意见。本文提出了一种利用Apache Spark流架构进行文化遗产场景方面挖掘的NoSQL数据库方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信