High-dimensional metamodeling for prediction of clock tree synthesis outcomes

A. Kahng, Bill Lin, S. Nath
{"title":"High-dimensional metamodeling for prediction of clock tree synthesis outcomes","authors":"A. Kahng, Bill Lin, S. Nath","doi":"10.1109/SLIP.2013.6681685","DOIUrl":null,"url":null,"abstract":"Clock tree synthesis (CTS) is a key aspect of on-chip interconnect, and major consumer of IC power and physical design resources. In modern sub-28nm tools and flows, it has become exceptionally difficult to satisfy skew, insertion delay and transition time constraints within power and area budgets, in part because commercial tools (with their many knobs) have become highly complex. This complexity, along with the complicated structure of real-world CTS instances (hierarchy, dividers, etc.) and floorplan contexts (aspect ratios, obstacles, etc.) make it very difficult to predict skew, power and other important metrics of CTS outcomes. In this work, we study CTS estimation in the high-dimensional parameter space of instance constraints and floorplan contexts. Using two leading commercial CTS tools as our testbed, we develop predictors, classifiers and “field of use” characterizations that can enable IC design teams to achieve required CTS solution quality through understanding of appropriate parameter subspaces. Our hierarchical hybrid surrogate modeling approach mitigates challenges of parameter multicollinearity in high dimensions. It achieves, e.g., worst-case estimation errors of 13% in contrast to 30% errors in [17]. We demonstrate use of a 94%-accurate “oracle” classifier and estimation models to predictably achieve CTS outcomes that meet specified constraints and target metrics.","PeriodicalId":385305,"journal":{"name":"2013 ACM/IEEE International Workshop on System Level Interconnect Prediction (SLIP)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 ACM/IEEE International Workshop on System Level Interconnect Prediction (SLIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLIP.2013.6681685","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

Clock tree synthesis (CTS) is a key aspect of on-chip interconnect, and major consumer of IC power and physical design resources. In modern sub-28nm tools and flows, it has become exceptionally difficult to satisfy skew, insertion delay and transition time constraints within power and area budgets, in part because commercial tools (with their many knobs) have become highly complex. This complexity, along with the complicated structure of real-world CTS instances (hierarchy, dividers, etc.) and floorplan contexts (aspect ratios, obstacles, etc.) make it very difficult to predict skew, power and other important metrics of CTS outcomes. In this work, we study CTS estimation in the high-dimensional parameter space of instance constraints and floorplan contexts. Using two leading commercial CTS tools as our testbed, we develop predictors, classifiers and “field of use” characterizations that can enable IC design teams to achieve required CTS solution quality through understanding of appropriate parameter subspaces. Our hierarchical hybrid surrogate modeling approach mitigates challenges of parameter multicollinearity in high dimensions. It achieves, e.g., worst-case estimation errors of 13% in contrast to 30% errors in [17]. We demonstrate use of a 94%-accurate “oracle” classifier and estimation models to predictably achieve CTS outcomes that meet specified constraints and target metrics.
用于预测时钟树合成结果的高维元建模
时钟树合成(CTS)是片上互连的一个关键方面,也是IC功耗和物理设计资源的主要消耗者。在现代28nm以下的工具和工艺中,在功率和面积预算范围内满足偏斜、插入延迟和过渡时间限制变得异常困难,部分原因是商业工具(带有许多旋钮)变得高度复杂。这种复杂性,加上现实世界CTS实例的复杂结构(层次结构、分隔器等)和平面图上下文(长宽比、障碍物等),使得预测CTS结果的倾斜、功率和其他重要指标变得非常困难。在这项工作中,我们研究了实例约束和平面图上下文的高维参数空间中的CTS估计。使用两种领先的商用CTS工具作为我们的测试平台,我们开发了预测器、分类器和“使用领域”特征,使IC设计团队能够通过理解适当的参数子空间来实现所需的CTS解决方案质量。我们的分层混合代理建模方法减轻了高维参数多重共线性的挑战。例如,它实现了13%的最坏情况估计误差,而[17]中的误差为30%。我们演示了使用准确率为94%的“oracle”分类器和估计模型来可预测地实现满足指定约束和目标度量的CTS结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信