Performance Analysis of 3D NDT Scan Matching for Autonomous Vehicles Using INS/GNSS/3D LiDAR-SLAM Integration Scheme

S. Srinara, Chi-Ming Lee, S. Tsai, G. Tsai, K. Chiang
{"title":"Performance Analysis of 3D NDT Scan Matching for Autonomous Vehicles Using INS/GNSS/3D LiDAR-SLAM Integration Scheme","authors":"S. Srinara, Chi-Ming Lee, S. Tsai, G. Tsai, K. Chiang","doi":"10.1109/INERTIAL51137.2021.9430476","DOIUrl":null,"url":null,"abstract":"Because robustness and accuracy of localization are crucial for autonomous driving applications. Using the conventional integration scheme of Inertial Navigation System (INS) and Global Navigation Satellite System (GNSS), pose estimation error can drift and accumulate with time, especially in GNSS challenging environment and in unknown environment where an existing map has not been constructed. In this paper, in term of using multi-sensor fusion for improving the positioning accuracy, we proposed a localization method that is based on LiDAR-based 3D Normal Distribution Transform (NDT) scan matching with an INS/GNSS integration scheme. As the experimental results, our proposed method showed a statistical improvement over the state of the art INS/GNSS integration scheme.","PeriodicalId":424028,"journal":{"name":"2021 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Symposium on Inertial Sensors and Systems (INERTIAL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INERTIAL51137.2021.9430476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Because robustness and accuracy of localization are crucial for autonomous driving applications. Using the conventional integration scheme of Inertial Navigation System (INS) and Global Navigation Satellite System (GNSS), pose estimation error can drift and accumulate with time, especially in GNSS challenging environment and in unknown environment where an existing map has not been constructed. In this paper, in term of using multi-sensor fusion for improving the positioning accuracy, we proposed a localization method that is based on LiDAR-based 3D Normal Distribution Transform (NDT) scan matching with an INS/GNSS integration scheme. As the experimental results, our proposed method showed a statistical improvement over the state of the art INS/GNSS integration scheme.
基于INS/GNSS/3D LiDAR-SLAM集成方案的自动驾驶汽车三维无损检测扫描匹配性能分析
因为定位的鲁棒性和准确性对自动驾驶应用至关重要。惯性导航系统(INS)与全球导航卫星系统(GNSS)的传统集成方案存在姿态估计误差随时间漂移和累积的问题,特别是在GNSS具有挑战性的环境和未构建现有地图的未知环境下。本文针对利用多传感器融合提高定位精度的问题,提出了一种基于激光雷达的三维正态分布变换(NDT)扫描匹配与INS/GNSS融合方案的定位方法。实验结果表明,我们提出的方法在统计上比目前最先进的INS/GNSS集成方案有了改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信