Robot tracking in task space using neural networks

G. Feng, C. K. Chak
{"title":"Robot tracking in task space using neural networks","authors":"G. Feng, C. K. Chak","doi":"10.1109/ICNN.1994.374684","DOIUrl":null,"url":null,"abstract":"This paper considers tracking control of robots in task space. A new control scheme is proposed based on a kind of conventional controller and a neural network based compensating controller. This scheme takes advantages of simplicity of the model based control approach and uses the neural network controller to compensate for the robot modelling uncertainties. The neural network is trained online based on Lyapunov theory and thus its convergence is guaranteed.<<ETX>>","PeriodicalId":209128,"journal":{"name":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNN.1994.374684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

This paper considers tracking control of robots in task space. A new control scheme is proposed based on a kind of conventional controller and a neural network based compensating controller. This scheme takes advantages of simplicity of the model based control approach and uses the neural network controller to compensate for the robot modelling uncertainties. The neural network is trained online based on Lyapunov theory and thus its convergence is guaranteed.<>
基于神经网络的任务空间机器人跟踪
研究了机器人在任务空间中的跟踪控制问题。提出了一种基于传统控制器和基于神经网络的补偿控制器的新型控制方案。该方案利用基于模型的控制方法的简单性,利用神经网络控制器对机器人建模的不确定性进行补偿。基于李雅普诺夫理论对神经网络进行在线训练,保证了神经网络的收敛性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信