The forecast for corrosion of reinforcing steel based on RBF neural network

Yan Liu, Shengli Zhao, Chen Yi
{"title":"The forecast for corrosion of reinforcing steel based on RBF neural network","authors":"Yan Liu, Shengli Zhao, Chen Yi","doi":"10.1109/ICWAPR.2009.5207406","DOIUrl":null,"url":null,"abstract":"By analyzing the causes and influencing factors of corrosion of reinforcing steel, the RBF neural network model for predicting reinforcement corrosion is founded. And actual data is analyzed through an example and results are compared with the BP network model. The testing results show that RBF network model for predicting reinforcement corrosion can become a new effective assessment model with better prediction results and higher recognition precision.","PeriodicalId":424264,"journal":{"name":"2009 International Conference on Wavelet Analysis and Pattern Recognition","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Wavelet Analysis and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWAPR.2009.5207406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

By analyzing the causes and influencing factors of corrosion of reinforcing steel, the RBF neural network model for predicting reinforcement corrosion is founded. And actual data is analyzed through an example and results are compared with the BP network model. The testing results show that RBF network model for predicting reinforcement corrosion can become a new effective assessment model with better prediction results and higher recognition precision.
基于RBF神经网络的钢筋腐蚀预测
通过分析钢筋腐蚀的原因及影响因素,建立了预测钢筋腐蚀的RBF神经网络模型。并通过算例对实际数据进行了分析,并与BP网络模型进行了比较。试验结果表明,RBF网络模型预测钢筋腐蚀具有较好的预测效果和较高的识别精度,是一种有效的新型评价模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信