Data-Driven Prediction of the Remaining useful Life of QFN Components Mounted on Printed Circuit Boards

Daniel Riegel, P. Gromala, S. Rzepka
{"title":"Data-Driven Prediction of the Remaining useful Life of QFN Components Mounted on Printed Circuit Boards","authors":"Daniel Riegel, P. Gromala, S. Rzepka","doi":"10.1109/SSI52265.2021.9467005","DOIUrl":null,"url":null,"abstract":"Prognostics and Health Management (PHM) introduces in-situ monitoring of health parameters to the reliability of electronics. In this paper we adopt a data-driven PHM approach to predict delamination in QFN components. The signal of on-chip stress sensors reacts to thermal and mechanical loads and alters under degradation processes. We track the sensor signal in an accelerated life test, which combines thermal cycling and four-point bending. The obtained run-to-failure data-sets reveal correlation to delamination and furthermore solder joint fatigue.","PeriodicalId":382081,"journal":{"name":"2021 Smart Systems Integration (SSI)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Smart Systems Integration (SSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSI52265.2021.9467005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Prognostics and Health Management (PHM) introduces in-situ monitoring of health parameters to the reliability of electronics. In this paper we adopt a data-driven PHM approach to predict delamination in QFN components. The signal of on-chip stress sensors reacts to thermal and mechanical loads and alters under degradation processes. We track the sensor signal in an accelerated life test, which combines thermal cycling and four-point bending. The obtained run-to-failure data-sets reveal correlation to delamination and furthermore solder joint fatigue.
印制电路板上QFN元件剩余使用寿命的数据驱动预测
预测和健康管理(PHM)介绍了对电子设备可靠性的健康参数的原位监测。在本文中,我们采用数据驱动的PHM方法来预测QFN组件中的分层。片上应力传感器的信号会对热载荷和机械载荷产生反应,并在退化过程中发生变化。我们在一个结合热循环和四点弯曲的加速寿命测试中跟踪传感器信号。获得的运行到失效数据集揭示了分层和焊点疲劳的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信