Asynchronous Autoregressive Prediction for Satellite Anomaly Detection

Peng Liu, Haopeng Zhang, Lifang Yuan, Borui Zhang, Chengkun Wang
{"title":"Asynchronous Autoregressive Prediction for Satellite Anomaly Detection","authors":"Peng Liu, Haopeng Zhang, Lifang Yuan, Borui Zhang, Chengkun Wang","doi":"10.1109/VCIP56404.2022.10008889","DOIUrl":null,"url":null,"abstract":"This paper proposes an ASynchronous Autoregressive Prediction (ASAP) method for satellite anomaly detection. We empirically observe that a single classification model can hardly detect unknown anomalous situations and neglect the Markov nature of temporal satellite data. To address this, we adopt an autoregressive model to deal with the prediction of unknown anomaly for satellite data. We further propose a non-uniform temporal encoding method for asynchronous data and a median filtering method for more accurate detection. To reduce the effect of outliers, we employ an adaptive threshold selection method to achieve a more robust classification boundary. Experiments on real satellite data demonstrate that the proposed ASAP method outperforms the baseline classification method by 55.79%.","PeriodicalId":269379,"journal":{"name":"2022 IEEE International Conference on Visual Communications and Image Processing (VCIP)","volume":"508 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP56404.2022.10008889","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes an ASynchronous Autoregressive Prediction (ASAP) method for satellite anomaly detection. We empirically observe that a single classification model can hardly detect unknown anomalous situations and neglect the Markov nature of temporal satellite data. To address this, we adopt an autoregressive model to deal with the prediction of unknown anomaly for satellite data. We further propose a non-uniform temporal encoding method for asynchronous data and a median filtering method for more accurate detection. To reduce the effect of outliers, we employ an adaptive threshold selection method to achieve a more robust classification boundary. Experiments on real satellite data demonstrate that the proposed ASAP method outperforms the baseline classification method by 55.79%.
卫星异常检测的异步自回归预测
提出了一种用于卫星异常检测的异步自回归预测方法。我们的经验观察到,单一的分类模型很难检测到未知的异常情况,并且忽略了时序卫星数据的马尔可夫性质。为了解决这个问题,我们采用自回归模型来处理卫星数据的未知异常预测。我们进一步提出了异步数据的非均匀时间编码方法和中值滤波方法以获得更准确的检测。为了减少异常值的影响,我们采用自适应阈值选择方法来实现更鲁棒的分类边界。在实际卫星数据上的实验表明,该方法的分类性能优于基线分类方法55.79%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信