A System-of-Systems Approach to Improving Intelligent Predictions and Decisions in a Time-series Environment

David M. Curry, W. W. Beaver, C. Dagli
{"title":"A System-of-Systems Approach to Improving Intelligent Predictions and Decisions in a Time-series Environment","authors":"David M. Curry, W. W. Beaver, C. Dagli","doi":"10.1109/SYSOSE.2018.8428744","DOIUrl":null,"url":null,"abstract":"AbstractAerospace production systems, publically traded securities, and countless other systems generate data in time-series formats. The capability to predict future values and outcomes allow optimal decisions and process adjustments to mitigate risk and achieve objectives. This is an application paper that explores improving the accuracy and precision of generating predicted values and decisions with time-series data by integrating existing data mining technologies and information systems. Existing systems are integrated into a System-of-System (SoS) meta-architecture utilizing the Flexible and Intelligent Learning Architecture for SoS (FILA-SoS) [2]. The Overall Objective of the SoS is to maximize the Key Performance Attributes (KPA): Performance of the Predicted Value, Performance of the Predicted Decision, Affordability, Scalabihty, and Robustness. Architectures are generated, assessed, and selected using evolutionary algorithms integrated with a Fuzzy Inference System. The SoS is evaluated with time-series data of publicly traded securities [1]. The results obtained suggest the best or near optimal SoS meta-architecture to improve predictions and decisions of time-series data versus single or hybrid stand-alone systems.","PeriodicalId":314200,"journal":{"name":"2018 13th Annual Conference on System of Systems Engineering (SoSE)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 13th Annual Conference on System of Systems Engineering (SoSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYSOSE.2018.8428744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

AbstractAerospace production systems, publically traded securities, and countless other systems generate data in time-series formats. The capability to predict future values and outcomes allow optimal decisions and process adjustments to mitigate risk and achieve objectives. This is an application paper that explores improving the accuracy and precision of generating predicted values and decisions with time-series data by integrating existing data mining technologies and information systems. Existing systems are integrated into a System-of-System (SoS) meta-architecture utilizing the Flexible and Intelligent Learning Architecture for SoS (FILA-SoS) [2]. The Overall Objective of the SoS is to maximize the Key Performance Attributes (KPA): Performance of the Predicted Value, Performance of the Predicted Decision, Affordability, Scalabihty, and Robustness. Architectures are generated, assessed, and selected using evolutionary algorithms integrated with a Fuzzy Inference System. The SoS is evaluated with time-series data of publicly traded securities [1]. The results obtained suggest the best or near optimal SoS meta-architecture to improve predictions and decisions of time-series data versus single or hybrid stand-alone systems.
在时间序列环境中改进智能预测和决策的系统的系统方法
航空航天生产系统、公开交易的证券和无数其他系统以时间序列格式生成数据。预测未来价值和结果的能力允许进行最佳决策和过程调整,以减轻风险并实现目标。这是一篇应用论文,探讨通过集成现有的数据挖掘技术和信息系统,提高时间序列数据生成预测值和决策的准确性和精度。现有的系统被集成到系统的系统(SoS)元架构中,利用SoS的灵活和智能学习架构(FILA-SoS)[2]。so的总体目标是最大化关键性能属性(KPA):预测值的性能、预测决策的性能、可负担性、可伸缩性和鲁棒性。架构生成,评估和选择使用进化算法与模糊推理系统集成。使用上市证券的时间序列数据对SoS进行评估[1]。获得的结果表明,与单一或混合独立系统相比,最佳或接近最优的SoS元架构可以改善时间序列数据的预测和决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信