{"title":"Output regulation of large-scale T-S fuzzy-model-based decentralized control systems with unknown interconnection terms","authors":"Y. Jang, H. Kim, Y. Joo, Jin Bae Park","doi":"10.1109/FUZZ-IEEE.2017.8015712","DOIUrl":null,"url":null,"abstract":"This paper considers a regulation problem of non-linear large-scale systems. To do this, a Takagi-Sugeno (T-S) fuzzy model is adopted for fuzzy modeling of the nonlinear large-scale systems, which has unknown interconnection terms. An output-feedback decentralized fuzzy controller with integral action is employed to drive the system outputs to reach a reference value and minimize the steady-state error. Sufficient conditions for the output regulation are derived from Lyapunov stability and these are formulated in terms of linear matrix inequalities (LMI). Finally, a numerical simulation example is given to demonstrate the effectiveness of the proposed design procedures and regulation conditions.","PeriodicalId":408343,"journal":{"name":"2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZ-IEEE.2017.8015712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
This paper considers a regulation problem of non-linear large-scale systems. To do this, a Takagi-Sugeno (T-S) fuzzy model is adopted for fuzzy modeling of the nonlinear large-scale systems, which has unknown interconnection terms. An output-feedback decentralized fuzzy controller with integral action is employed to drive the system outputs to reach a reference value and minimize the steady-state error. Sufficient conditions for the output regulation are derived from Lyapunov stability and these are formulated in terms of linear matrix inequalities (LMI). Finally, a numerical simulation example is given to demonstrate the effectiveness of the proposed design procedures and regulation conditions.