Verifying bit-manipulations of floating-point

Wonyeol Lee, Rahul Sharma, A. Aiken
{"title":"Verifying bit-manipulations of floating-point","authors":"Wonyeol Lee, Rahul Sharma, A. Aiken","doi":"10.1145/2908080.2908107","DOIUrl":null,"url":null,"abstract":"Reasoning about floating-point is difficult and becomes only more so if there is an interplay between floating-point and bit-level operations. Even though real-world floating-point libraries use implementations that have such mixed computations, no systematic technique to verify the correctness of the implementations of such computations is known. In this paper, we present the first general technique for verifying the correctness of mixed binaries, which combines abstraction, analytical optimization, and testing. The technique provides a method to compute an error bound of a given implementation with respect to its mathematical specification. We apply our technique to Intel's implementations of transcendental functions and prove formal error bounds for these widely used routines.","PeriodicalId":178839,"journal":{"name":"Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2908080.2908107","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Reasoning about floating-point is difficult and becomes only more so if there is an interplay between floating-point and bit-level operations. Even though real-world floating-point libraries use implementations that have such mixed computations, no systematic technique to verify the correctness of the implementations of such computations is known. In this paper, we present the first general technique for verifying the correctness of mixed binaries, which combines abstraction, analytical optimization, and testing. The technique provides a method to compute an error bound of a given implementation with respect to its mathematical specification. We apply our technique to Intel's implementations of transcendental functions and prove formal error bounds for these widely used routines.
验证浮点数的位操作
关于浮点的推理是困难的,如果在浮点和位级操作之间存在相互作用,就会变得更加困难。即使现实世界的浮点库使用具有这种混合计算的实现,也没有已知的系统技术来验证这种计算实现的正确性。在本文中,我们提出了验证混合二进制文件正确性的第一种通用技术,它结合了抽象、分析优化和测试。该技术提供了一种方法来计算给定实现相对于其数学规范的错误边界。我们将我们的技术应用于英特尔的超越函数实现,并证明了这些广泛使用的例程的正式错误界限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信