Full-Car Active Suspension System Identification Using Flexible Deep Neural Network

Amirsaeid Safari, S. Mehralian, M. Teshnehlab
{"title":"Full-Car Active Suspension System Identification Using Flexible Deep Neural Network","authors":"Amirsaeid Safari, S. Mehralian, M. Teshnehlab","doi":"10.1109/CFIS49607.2020.9238686","DOIUrl":null,"url":null,"abstract":"This paper presents the system identification based on a flexible deep neural network for a seven degree of freedom(7DOF), a full-car active suspension system that is multi-input and multi-output. The proposed flexible deep neural network, according to input and output data, obtained three layers of flexible auto-encoder. The flexible name was chosen for the learnable activation function parameter in the activation layers. This view permits every neuron to adjust its activation function and adapt the neuron to boost performance. Here flexible tanh activation function introduced, which causes better performance with the same neurons in the hidden layer. The comparison shows the identification error between flexible deep neural network and classical deep neural network. This adaptation, of course, provides prediction improvement.","PeriodicalId":128323,"journal":{"name":"2020 8th Iranian Joint Congress on Fuzzy and intelligent Systems (CFIS)","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 8th Iranian Joint Congress on Fuzzy and intelligent Systems (CFIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CFIS49607.2020.9238686","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents the system identification based on a flexible deep neural network for a seven degree of freedom(7DOF), a full-car active suspension system that is multi-input and multi-output. The proposed flexible deep neural network, according to input and output data, obtained three layers of flexible auto-encoder. The flexible name was chosen for the learnable activation function parameter in the activation layers. This view permits every neuron to adjust its activation function and adapt the neuron to boost performance. Here flexible tanh activation function introduced, which causes better performance with the same neurons in the hidden layer. The comparison shows the identification error between flexible deep neural network and classical deep neural network. This adaptation, of course, provides prediction improvement.
基于柔性深度神经网络的整车主动悬架系统辨识
针对整车多输入多输出的七自由度主动悬架系统,提出了基于柔性深度神经网络的系统辨识方法。所提出的柔性深度神经网络,根据输入输出数据,得到三层柔性自编码器。激活层中可学习的激活函数参数选择灵活的名称。这种观点允许每个神经元调整其激活功能,并调整神经元以提高性能。这里引入了灵活的tanh激活函数,使隐藏层中相同的神经元具有更好的性能。比较表明柔性深度神经网络与经典深度神经网络的辨识误差。当然,这种适应提供了预测的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信