Chinese teaching material readability assessment with contextual information

Hao Liu, Si Li, Jianbo Zhao, Zuyi Bao, Xiaopeng Bai
{"title":"Chinese teaching material readability assessment with contextual information","authors":"Hao Liu, Si Li, Jianbo Zhao, Zuyi Bao, Xiaopeng Bai","doi":"10.1109/IALP.2017.8300547","DOIUrl":null,"url":null,"abstract":"Readability of an article indicates its level in terms of reading comprehension in general. Readability assessment is a process that measures the reading level of a piece of text, which can help in finding reading materials suitable for readers. In this paper, we aim to evaluate the readability about the Chinese teaching material aimed at second language (L2) learners. We introduce the neural network models to the readability assessment task for the first time. In order to capture the contextual information for readability assessment, we employ Convolutional Neural Network (CNN) to capture hidden local features. Then we use bi-directional Long Short-Term Memory Networks (bi-LSTM) neural network to combine the past and future information together. Experiment results show that our model achieves competitive performance.","PeriodicalId":183586,"journal":{"name":"2017 International Conference on Asian Language Processing (IALP)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Asian Language Processing (IALP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP.2017.8300547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Readability of an article indicates its level in terms of reading comprehension in general. Readability assessment is a process that measures the reading level of a piece of text, which can help in finding reading materials suitable for readers. In this paper, we aim to evaluate the readability about the Chinese teaching material aimed at second language (L2) learners. We introduce the neural network models to the readability assessment task for the first time. In order to capture the contextual information for readability assessment, we employ Convolutional Neural Network (CNN) to capture hidden local features. Then we use bi-directional Long Short-Term Memory Networks (bi-LSTM) neural network to combine the past and future information together. Experiment results show that our model achieves competitive performance.
基于语境信息的语文教材可读性评价
文章的可读性通常反映了文章在阅读理解方面的水平。可读性评估是衡量一篇文章的阅读水平的过程,它可以帮助读者找到适合自己的阅读材料。本文旨在评价面向第二语言学习者的汉语教材的可读性。我们首次将神经网络模型引入到可读性评价任务中。为了捕获上下文信息以进行可读性评估,我们使用卷积神经网络(CNN)来捕获隐藏的局部特征。然后,我们使用双向长短期记忆网络(bi-LSTM)神经网络将过去和未来信息结合在一起。实验结果表明,该模型具有较强的竞争力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信