QoS-driven Probabilistic Runtime Evaluations of Virtual Machine Placement on Hosts

Diego Perez-Palacin, R. Mirandola, Federico Monterisi, A. Montoli
{"title":"QoS-driven Probabilistic Runtime Evaluations of Virtual Machine Placement on Hosts","authors":"Diego Perez-Palacin, R. Mirandola, Federico Monterisi, A. Montoli","doi":"10.1109/UCC.2015.24","DOIUrl":null,"url":null,"abstract":"We tackle the cloud providers challenge of virtual machine placement when the client experienced Quality of Service (QoS) is of paramount importance and resource demand of virtual machines varies over time. To this end, this work investigates approaches that leverage measured dynamic data for placement decisions. Relying on dynamic data to guide decisions has, on the one hand, the potential to optimize hardware utilization, while, on the other hand, increases the risk on the provided QoS. In this context, we present three probabilistic methods for evaluation of host suitability to allocate new virtual machines. We also present experiments results that illustrate the differences in the outcomes of presented approaches.","PeriodicalId":381279,"journal":{"name":"2015 IEEE/ACM 8th International Conference on Utility and Cloud Computing (UCC)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE/ACM 8th International Conference on Utility and Cloud Computing (UCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UCC.2015.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We tackle the cloud providers challenge of virtual machine placement when the client experienced Quality of Service (QoS) is of paramount importance and resource demand of virtual machines varies over time. To this end, this work investigates approaches that leverage measured dynamic data for placement decisions. Relying on dynamic data to guide decisions has, on the one hand, the potential to optimize hardware utilization, while, on the other hand, increases the risk on the provided QoS. In this context, we present three probabilistic methods for evaluation of host suitability to allocate new virtual machines. We also present experiments results that illustrate the differences in the outcomes of presented approaches.
qos驱动的虚拟机在主机上放置的概率运行时评估
当客户体验到服务质量(QoS)是最重要的,并且虚拟机的资源需求随时间变化时,我们解决了云提供商对虚拟机放置的挑战。为此,这项工作调查了利用测量动态数据进行安置决策的方法。依赖动态数据来指导决策,一方面有可能优化硬件利用率,但另一方面增加了所提供QoS的风险。在这种情况下,我们提出了三种评估主机是否适合分配新虚拟机的概率方法。我们还提出了实验结果,说明了所提出的方法的结果的差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信