Relevant opportunistic information extraction and scheduling in heterogeneous sensor networks

T. Gulrez, S. Challa, T. Yaqub, J. Katupitiya
{"title":"Relevant opportunistic information extraction and scheduling in heterogeneous sensor networks","authors":"T. Gulrez, S. Challa, T. Yaqub, J. Katupitiya","doi":"10.1109/CAMAP.2005.1574209","DOIUrl":null,"url":null,"abstract":"Determining the output of the most relevant sensor is of crucial importance when heterogeneous sensors are available for measuring a given process in an environment. In this paper, we describe an IEEE 1451 TEDS (transducer electronic data sheets) compliant sensor model for heterogeneous sensor networks. The proposed model uses the relevance feedback method to understand the context of a sensor learning application. We present results of a real time implementation of heterogeneous sensor networks using distributed multi-sensing 3D real-time robotics software player/gazebo on an autonomous mobile robot's navigation problem. The results show that the proposed model can be utilised in the real-time scenario and can help reduce the computational cost of a system","PeriodicalId":281761,"journal":{"name":"1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005.","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMAP.2005.1574209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Determining the output of the most relevant sensor is of crucial importance when heterogeneous sensors are available for measuring a given process in an environment. In this paper, we describe an IEEE 1451 TEDS (transducer electronic data sheets) compliant sensor model for heterogeneous sensor networks. The proposed model uses the relevance feedback method to understand the context of a sensor learning application. We present results of a real time implementation of heterogeneous sensor networks using distributed multi-sensing 3D real-time robotics software player/gazebo on an autonomous mobile robot's navigation problem. The results show that the proposed model can be utilised in the real-time scenario and can help reduce the computational cost of a system
异构传感器网络中相关机会信息的提取与调度
当异构传感器可用于测量环境中的给定过程时,确定最相关传感器的输出是至关重要的。在本文中,我们描述了一个IEEE 1451 TEDS(传感器电子数据表)兼容的异构传感器网络传感器模型。提出的模型使用相关反馈方法来理解传感器学习应用的上下文。本文介绍了利用分布式多传感3D实时机器人软件player/gazebo对自主移动机器人导航问题进行异构传感器网络实时实现的结果。结果表明,该模型可用于实时场景,并有助于降低系统的计算成本
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信