Analisis Sentimen Mengenai Gangguan Bipolar Pada Twitter Menggunakan Algoritma Naïve Bayes

Oriza Sativa Dinauni Silaen, Herlawati Herlawati, Rasim Rasim
{"title":"Analisis Sentimen Mengenai Gangguan Bipolar Pada Twitter Menggunakan Algoritma Naïve Bayes","authors":"Oriza Sativa Dinauni Silaen, Herlawati Herlawati, Rasim Rasim","doi":"10.31603/komtika.v6i2.8198","DOIUrl":null,"url":null,"abstract":"Bipolar disorder is one of the world's most common mental health disorders. To find out public sentiment regarding bipolar disorder, sentiment analysis is carried out through social media to analyze positive or negative sentiments with the aim of maintaining positive sentiment towards the problem of bipolar disorder. Twitter is a social media that is often used to exchange information, discuss, and even express emotions. The emotions of Twitter users can be called sentiment. Sentiment analysis is also carried out to see opinions or tendencies towards an opinion. Opinion tendencies can be in the form of positive or negative sentiments. The data used in this study uses the bipolar keyword. There are 2177 tweets data that were successfully obtained in the crawling process using API key access from Twitter developers, after which the data will be processed using preprocessing. The comparison of the presentations obtained is 70.92% expressing a negative opinion and 29.08% expressing a favorable opinion. The analysis results in this study using the nave Bayes algorithm is with an accuracy value of 92.110092%.","PeriodicalId":292404,"journal":{"name":"Jurnal Komtika (Komputasi dan Informatika)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Komtika (Komputasi dan Informatika)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31603/komtika.v6i2.8198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Bipolar disorder is one of the world's most common mental health disorders. To find out public sentiment regarding bipolar disorder, sentiment analysis is carried out through social media to analyze positive or negative sentiments with the aim of maintaining positive sentiment towards the problem of bipolar disorder. Twitter is a social media that is often used to exchange information, discuss, and even express emotions. The emotions of Twitter users can be called sentiment. Sentiment analysis is also carried out to see opinions or tendencies towards an opinion. Opinion tendencies can be in the form of positive or negative sentiments. The data used in this study uses the bipolar keyword. There are 2177 tweets data that were successfully obtained in the crawling process using API key access from Twitter developers, after which the data will be processed using preprocessing. The comparison of the presentations obtained is 70.92% expressing a negative opinion and 29.08% expressing a favorable opinion. The analysis results in this study using the nave Bayes algorithm is with an accuracy value of 92.110092%.
双相情感障碍是世界上最常见的精神健康障碍之一。为了了解公众对双相情感障碍的情绪,通过社交媒体进行情绪分析,分析积极或消极的情绪,以保持对双相情感障碍问题的积极情绪。Twitter是一种社交媒体,经常被用来交换信息、讨论,甚至表达情感。推特用户的情绪可以被称为情绪。情感分析也被用来观察观点或倾向于一种观点。舆论倾向可以表现为积极或消极的情绪。本研究中使用的数据使用双相关键字。在爬行过程中,使用Twitter开发人员的API密钥访问成功获取了2177条tweet数据,之后将使用预处理对数据进行处理。所获得的演示文稿的比较是70.92%表示否定意见,29.08%表示赞成意见。本研究中使用朴素贝叶斯算法的分析结果准确率值为92.110092%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信