Geometric Features Based Framework for Colonic Polyp Detection using a New Color Coding Scheme

Dongqing Chen, A. Farag, M. Hassouna, R. Falk, G. Dryden
{"title":"Geometric Features Based Framework for Colonic Polyp Detection using a New Color Coding Scheme","authors":"Dongqing Chen, A. Farag, M. Hassouna, R. Falk, G. Dryden","doi":"10.1109/ICIP.2007.4379753","DOIUrl":null,"url":null,"abstract":"Curvature-based geometric features have been proven to be important for colonic polyp detection. In this paper, we present an automatic detection framework and color coding scheme to highlight the detected polyps. The key idea is to place the detected polyps at the same locations in a newly created polygonal dataset with the same topology and geometry properties as the triangulated mesh surface of real colon dataset, and assign different colors to the two separated datasets to highlight the polyps. Finally, we validate the proposed framework by computer simulated and real colon datasets. For fifteen synthetic polyps with different shapes and different sizes, the sensitivity is 100%, and false positive is 0. For four real colon datasets, the proposed algorithm has achieved the sensitivity of 75%.","PeriodicalId":131177,"journal":{"name":"2007 IEEE International Conference on Image Processing","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Conference on Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP.2007.4379753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Curvature-based geometric features have been proven to be important for colonic polyp detection. In this paper, we present an automatic detection framework and color coding scheme to highlight the detected polyps. The key idea is to place the detected polyps at the same locations in a newly created polygonal dataset with the same topology and geometry properties as the triangulated mesh surface of real colon dataset, and assign different colors to the two separated datasets to highlight the polyps. Finally, we validate the proposed framework by computer simulated and real colon datasets. For fifteen synthetic polyps with different shapes and different sizes, the sensitivity is 100%, and false positive is 0. For four real colon datasets, the proposed algorithm has achieved the sensitivity of 75%.
基于几何特征的彩色编码结肠息肉检测框架
基于曲率的几何特征已被证明对结肠息肉的检测是重要的。在本文中,我们提出了一个自动检测框架和颜色编码方案,以突出显示检测到的息肉。关键思想是将检测到的息肉放置在新创建的多边形数据集中的相同位置,该数据集具有与真实冒号数据集的三角网格表面相同的拓扑和几何属性,并为两个分离的数据集分配不同的颜色以突出显示息肉。最后,我们通过计算机模拟和真实冒号数据集验证了所提出的框架。对15个不同形状和大小的合成息肉,灵敏度为100%,假阳性为0。对于4个真实冒号数据集,本文算法的灵敏度达到75%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信