A fully-connected, distributed mesh feedback architecture for photonic A/D conversion

B. Shoop, P. Das, E. Ressler, R. W. Sadowski, G. P. Dudevoir, A. Sayles
{"title":"A fully-connected, distributed mesh feedback architecture for photonic A/D conversion","authors":"B. Shoop, P. Das, E. Ressler, R. W. Sadowski, G. P. Dudevoir, A. Sayles","doi":"10.1109/LEOSST.2000.869701","DOIUrl":null,"url":null,"abstract":"We report a new approach to photonic ADC using a distributed neural network oversampling techniques, and a smart pixel hardware implementation. In this approach, the input signal is first sampled at a rate higher than that required by the Nyquist criterion and then presented spatially as the input to a two-dimensional error diffusion neural network consisting of M/spl times/N neurons, each representing a pixel in the image space. The neural network processes the input oversampled analog image and produces an M/spl times/N pixel binary or halftoned output image. By design of the neural network, this halftoned output image is an optimum representation of the input analog signal. Upon convergence, the neural network minimizes an energy function representing the frequency-weighted squared error between the input analog image and the output halftoned image. Decimation and low-pass filtering techniques digitally sum and average the M/spl times/N pixel output binary image using high-speed digital electronic circuitry. By employing a two-dimensional smart pixel neural approach to oversampling ADC, each pixel constitutes a simple oversampling modulator thereby producing a distributed A/D architecture. Spectral noise shaping across the array diffuses quantization error thereby improving overall SNR performance. Each quantizer within the network is embedded in a fully-connected distributed mesh feedback loop which spectrally shapes the overall quantization noise thereby significantly reducing the effects of component mismatch typically associated with parallel or channelized A/D approaches.","PeriodicalId":415720,"journal":{"name":"2000 Digest of the LEOS Summer Topical Meetings. Electronic-Enhanced Optics. Optical Sensing in Semiconductor Manufacturing. Electro-Optics in Space. Broadband Optical Networks (Cat. No.00TH8497)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 Digest of the LEOS Summer Topical Meetings. Electronic-Enhanced Optics. Optical Sensing in Semiconductor Manufacturing. Electro-Optics in Space. Broadband Optical Networks (Cat. No.00TH8497)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LEOSST.2000.869701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We report a new approach to photonic ADC using a distributed neural network oversampling techniques, and a smart pixel hardware implementation. In this approach, the input signal is first sampled at a rate higher than that required by the Nyquist criterion and then presented spatially as the input to a two-dimensional error diffusion neural network consisting of M/spl times/N neurons, each representing a pixel in the image space. The neural network processes the input oversampled analog image and produces an M/spl times/N pixel binary or halftoned output image. By design of the neural network, this halftoned output image is an optimum representation of the input analog signal. Upon convergence, the neural network minimizes an energy function representing the frequency-weighted squared error between the input analog image and the output halftoned image. Decimation and low-pass filtering techniques digitally sum and average the M/spl times/N pixel output binary image using high-speed digital electronic circuitry. By employing a two-dimensional smart pixel neural approach to oversampling ADC, each pixel constitutes a simple oversampling modulator thereby producing a distributed A/D architecture. Spectral noise shaping across the array diffuses quantization error thereby improving overall SNR performance. Each quantizer within the network is embedded in a fully-connected distributed mesh feedback loop which spectrally shapes the overall quantization noise thereby significantly reducing the effects of component mismatch typically associated with parallel or channelized A/D approaches.
用于光子A/D转换的全连接分布式网格反馈架构
我们报告了一种使用分布式神经网络过采样技术和智能像素硬件实现的光子ADC新方法。在这种方法中,首先以高于Nyquist准则要求的速率对输入信号进行采样,然后在空间上作为二维误差扩散神经网络的输入呈现,该神经网络由M/spl倍/N个神经元组成,每个神经元代表图像空间中的一个像素。神经网络处理输入的过采样模拟图像并产生M/spl倍/N像素的二进制或半色调输出图像。通过神经网络的设计,该半色调输出图像是输入模拟信号的最佳表示。收敛后,神经网络最小化能量函数,该能量函数表示输入模拟图像与输出半色调图像之间的频率加权平方误差。抽取和低通滤波技术利用高速数字电子电路对输出的M/spl次/N像素二值图像进行数字求和和平均。通过采用二维智能像素神经方法对ADC进行过采样,每个像素构成一个简单的过采样调制器,从而产生分布式a /D架构。频谱噪声整形通过阵列扩散量化误差,从而提高整体信噪比性能。网络中的每个量化器都嵌入在一个完全连接的分布式网格反馈回路中,该回路在频谱上塑造了整体量化噪声,从而显著降低了通常与并行或信道化a /D方法相关的组件不匹配的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信