Boosted Edge Orientation Histograms for Grasping Point Detection

L. Lefakis, H. Wildenauer, Manuel Pascual Garcia-Tubio, L. Szumilas
{"title":"Boosted Edge Orientation Histograms for Grasping Point Detection","authors":"L. Lefakis, H. Wildenauer, Manuel Pascual Garcia-Tubio, L. Szumilas","doi":"10.1109/ICPR.2010.990","DOIUrl":null,"url":null,"abstract":"In this paper, we describe a novel algorithm for the detection of grasping points in images of previously unseen objects. A basic building block of our approach is the use of a newly devised descriptor, representing semi-local grasping point shape by the use edge orientation histograms. Combined with boosting, our method learns discriminative grasp point models for new objects from a set of annotated real-world images. The method has been extensively evaluated on challenging images of real scenes, exhibiting largely varying characteristics concerning illumination conditions, scene complexity, and viewpoint. Our experiments show that the method works in a stable manner and that its performance compares favorably to the state-of-the-art.","PeriodicalId":309591,"journal":{"name":"2010 20th International Conference on Pattern Recognition","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 20th International Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPR.2010.990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we describe a novel algorithm for the detection of grasping points in images of previously unseen objects. A basic building block of our approach is the use of a newly devised descriptor, representing semi-local grasping point shape by the use edge orientation histograms. Combined with boosting, our method learns discriminative grasp point models for new objects from a set of annotated real-world images. The method has been extensively evaluated on challenging images of real scenes, exhibiting largely varying characteristics concerning illumination conditions, scene complexity, and viewpoint. Our experiments show that the method works in a stable manner and that its performance compares favorably to the state-of-the-art.
用于抓点检测的增强边缘方向直方图
在本文中,我们描述了一种新的算法,用于检测以前未见过的物体图像中的抓取点。我们方法的一个基本组成部分是使用新设计的描述符,通过使用边缘方向直方图表示半局部抓取点形状。结合boosting,我们的方法从一组带注释的真实世界图像中学习新对象的判别抓取点模型。该方法已经在真实场景的具有挑战性的图像上进行了广泛的评估,在照明条件、场景复杂性和视点方面表现出很大的不同特征。我们的实验表明,该方法以稳定的方式工作,其性能优于最先进的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信