A Pseudorandom Bit Generator Based on Hyperbolic Sine Function

Qi Wu
{"title":"A Pseudorandom Bit Generator Based on Hyperbolic Sine Function","authors":"Qi Wu","doi":"10.1051/itmconf/20224702001","DOIUrl":null,"url":null,"abstract":"In the literature, little attention is paid to devising and analyzing novel one dimensional chaotic mappings. In our previous efforts, we have tried fold, translation & scale on arctangent function & sigmoid function respectively, which brings good results. In this paper, we do the same to obtain a variant of Hyperbolic Sine Function. Both Bifurcation Diagram & Lyapunov Exponent Spectrum manifest that the new mapping possesses wonderful chaotic properties. Then, a pseudorandom bit generator is designed based on it. Pseudorandom tests demonstrate that the generator is much better than our previous ones. It owns great application prospect.","PeriodicalId":177985,"journal":{"name":"2022 IEEE 2nd International Conference on Information Communication and Software Engineering (ICICSE)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 2nd International Conference on Information Communication and Software Engineering (ICICSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/itmconf/20224702001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the literature, little attention is paid to devising and analyzing novel one dimensional chaotic mappings. In our previous efforts, we have tried fold, translation & scale on arctangent function & sigmoid function respectively, which brings good results. In this paper, we do the same to obtain a variant of Hyperbolic Sine Function. Both Bifurcation Diagram & Lyapunov Exponent Spectrum manifest that the new mapping possesses wonderful chaotic properties. Then, a pseudorandom bit generator is designed based on it. Pseudorandom tests demonstrate that the generator is much better than our previous ones. It owns great application prospect.
一种基于双曲正弦函数的伪随机比特发生器
在文献中,很少关注设计和分析新的一维混沌映射。在我们之前的工作中,我们分别对arctan函数和sigmoid函数进行了折叠、平移和缩放的尝试,都取得了很好的效果。在本文中,我们用同样的方法得到了双曲正弦函数的一个变体。分岔图和李雅普诺夫指数谱都表明了新映射具有很好的混沌性质。在此基础上设计了伪随机比特发生器。伪随机测试表明,该生成器比我们以前的生成器要好得多。具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信