Feature extraction from vein images using spatial information and chain codes

Anika Pflug , Daniel Hartung , Christoph Busch
{"title":"Feature extraction from vein images using spatial information and chain codes","authors":"Anika Pflug ,&nbsp;Daniel Hartung ,&nbsp;Christoph Busch","doi":"10.1016/j.istr.2012.02.003","DOIUrl":null,"url":null,"abstract":"<div><p>The pattern formed by subcutaneous blood vessels is unique attribute of each individual and can therefore be used as a biometric characteristic. Exploiting the specific near infrared light absorption properties of blood, the capture procedure for this biometric characteristic is convenient and allows contact-less sensors. However, image skeletons extracted from vein images are often unstable, because the raw vein images suffer from low contrast. We propose a new chain code based feature en- coding method, using spatial and orientation properties of vein patterns, which is capable of dealing with noisy and unstable image skeletons. Chain code comparison and a selection of preprocessing methods have been evaluated in a series of different experiments in single and multi-reference scenarios on two different vein image databases. The experiments showed that chain code comparison outperforms minutiae-based approaches and similarity based mix matching.</p></div>","PeriodicalId":100669,"journal":{"name":"Information Security Technical Report","volume":"17 1","pages":"Pages 26-35"},"PeriodicalIF":0.0000,"publicationDate":"2012-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.istr.2012.02.003","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Security Technical Report","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1363412712000234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

The pattern formed by subcutaneous blood vessels is unique attribute of each individual and can therefore be used as a biometric characteristic. Exploiting the specific near infrared light absorption properties of blood, the capture procedure for this biometric characteristic is convenient and allows contact-less sensors. However, image skeletons extracted from vein images are often unstable, because the raw vein images suffer from low contrast. We propose a new chain code based feature en- coding method, using spatial and orientation properties of vein patterns, which is capable of dealing with noisy and unstable image skeletons. Chain code comparison and a selection of preprocessing methods have been evaluated in a series of different experiments in single and multi-reference scenarios on two different vein image databases. The experiments showed that chain code comparison outperforms minutiae-based approaches and similarity based mix matching.

基于空间信息和链码的静脉图像特征提取
皮下血管形成的模式是每个个体的独特属性,因此可以用作生物特征。利用血液的特定近红外光吸收特性,这种生物特征的捕获过程很方便,并且允许使用非接触式传感器。然而,由于原始静脉图像对比度较低,从静脉图像中提取的图像骨架往往不稳定。本文提出了一种新的基于链码的特征编码方法,该方法利用了静脉模式的空间和方向特性,能够处理有噪声和不稳定的图像骨架。在两种不同的静脉图像数据库上,在单参考和多参考场景下进行了一系列不同的实验,对链码比较和预处理方法的选择进行了评估。实验表明,链码比对优于基于极小值的方法和基于相似度的混合匹配方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信