Applying prerequisite structure inference to adaptive testing

S. Saarinen, Evan Cater, M. Littman
{"title":"Applying prerequisite structure inference to adaptive testing","authors":"S. Saarinen, Evan Cater, M. Littman","doi":"10.1145/3375462.3375541","DOIUrl":null,"url":null,"abstract":"Modeling student knowledge is important for assessment design, adaptive testing, curriculum design, and pedagogical intervention. The assessment design community has primarily focused on continuous latent-skill models with strong conditional independence assumptions among knowledge items, while the prerequisite discovery community has developed many models that aim to exploit the interdependence of discrete knowledge items. This paper attempts to bridge the gap by asking, \"When does modeling assessment item interdependence improve predictive accuracy?\" A novel adaptive testing evaluation framework is introduced that is amenable to techniques from both communities, and an efficient algorithm, Directed Item-Dependence And Confidence Thresholds (DIDACT), is introduced and compared with an Item-Response-Theory based model on several real and synthetic datasets. Experiments suggest that assessments with closely related questions benefit significantly from modeling item interdependence.","PeriodicalId":355800,"journal":{"name":"Proceedings of the Tenth International Conference on Learning Analytics & Knowledge","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Tenth International Conference on Learning Analytics & Knowledge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3375462.3375541","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Modeling student knowledge is important for assessment design, adaptive testing, curriculum design, and pedagogical intervention. The assessment design community has primarily focused on continuous latent-skill models with strong conditional independence assumptions among knowledge items, while the prerequisite discovery community has developed many models that aim to exploit the interdependence of discrete knowledge items. This paper attempts to bridge the gap by asking, "When does modeling assessment item interdependence improve predictive accuracy?" A novel adaptive testing evaluation framework is introduced that is amenable to techniques from both communities, and an efficient algorithm, Directed Item-Dependence And Confidence Thresholds (DIDACT), is introduced and compared with an Item-Response-Theory based model on several real and synthetic datasets. Experiments suggest that assessments with closely related questions benefit significantly from modeling item interdependence.
前提结构推理在自适应测试中的应用
对学生知识进行建模对评估设计、适应性测试、课程设计和教学干预都很重要。评估设计界主要关注知识项之间具有强条件独立性假设的连续潜在技能模型,而先决条件发现界则开发了许多旨在利用离散知识项之间相互依存关系的模型。本文试图通过提问来弥合这一差距,“何时建模评估项目的相互依赖性提高了预测的准确性?”介绍了一种适用于这两个群体技术的新型自适应测试评估框架,并介绍了一种有效的算法——定向项目依赖和置信度阈值(DIDACT),并在几个真实和合成数据集上与基于项目响应理论的模型进行了比较。实验表明,具有密切相关问题的评估显著受益于建模项目相互依赖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信