Minding isometries of ruled surfaces in Lorentz-Minkowski space

Ljiljana Primorac Gajčić, Željka Milin-Šipuš
{"title":"Minding isometries of ruled surfaces in Lorentz-Minkowski space","authors":"Ljiljana Primorac Gajčić, Željka Milin-Šipuš","doi":"10.21857/y54jofpplm","DOIUrl":null,"url":null,"abstract":"In this paper we study isometries of ruled surfaces in the Lorentz-Minkowski space that preserve rulings. A special attention is given to the classes of surfaces having no Euclidean counterparts. We also construct some examples of isometric ruled surfaces with certain properties and rulings preserved.","PeriodicalId":269525,"journal":{"name":"Rad Hrvatske akademije znanosti i umjetnosti. Matematičke znanosti","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rad Hrvatske akademije znanosti i umjetnosti. Matematičke znanosti","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21857/y54jofpplm","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we study isometries of ruled surfaces in the Lorentz-Minkowski space that preserve rulings. A special attention is given to the classes of surfaces having no Euclidean counterparts. We also construct some examples of isometric ruled surfaces with certain properties and rulings preserved.
洛伦兹-闵可夫斯基空间中直纹曲面的等距
本文研究了洛伦兹-闵可夫斯基空间中保留规则的直纹曲面的等距。特别注意没有欧几里德对应物的曲面的类别。我们还构造了一些等距直纹曲面的例子,这些曲面保留了一定的性质和直纹。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信