Sayan Bandyapadhyay, F. Fomin, P. Golovach, Nidhi Purohit, Kirill Simonov
{"title":"FPT Approximation for Fair Minimum-Load Clustering","authors":"Sayan Bandyapadhyay, F. Fomin, P. Golovach, Nidhi Purohit, Kirill Simonov","doi":"10.4230/LIPIcs.IPEC.2022.4","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the Minimum-Load $k$-Clustering/Facility Location (MLkC) problem where we are given a set $P$ of $n$ points in a metric space that we have to cluster and an integer $k$ that denotes the number of clusters. Additionally, we are given a set $F$ of cluster centers in the same metric space. The goal is to select a set $C\\subseteq F$ of $k$ centers and assign each point in $P$ to a center in $C$, such that the maximum load over all centers is minimized. Here the load of a center is the sum of the distances between it and the points assigned to it. Although clustering/facility location problems have a rich literature, the minimum-load objective is not studied substantially, and hence MLkC has remained a poorly understood problem. More interestingly, the problem is notoriously hard even in some special cases including the one in line metrics as shown by Ahmadian et al. [ACM Trans. Algo. 2018]. They also show APX-hardness of the problem in the plane. On the other hand, the best-known approximation factor for MLkC is $O(k)$, even in the plane. In this work, we study a fair version of MLkC inspired by the work of Chierichetti et al. [NeurIPS, 2017], which generalizes MLkC. Here the input points are colored by one of the $\\ell$ colors denoting the group they belong to. MLkC is the special case with $\\ell=1$. Considering this problem, we are able to obtain a $3$-approximation in $f(k,\\ell)\\cdot n^{O(1)}$ time. Also, our scheme leads to an improved $(1 + \\epsilon)$-approximation in case of Euclidean norm, and in this case, the running time depends only polynomially on the dimension $d$. Our results imply the same approximations for MLkC with running time $f(k)\\cdot n^{O(1)}$, achieving the first constant approximations for this problem in general and Euclidean metric spaces.","PeriodicalId":137775,"journal":{"name":"International Symposium on Parameterized and Exact Computation","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Parameterized and Exact Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4230/LIPIcs.IPEC.2022.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this paper, we consider the Minimum-Load $k$-Clustering/Facility Location (MLkC) problem where we are given a set $P$ of $n$ points in a metric space that we have to cluster and an integer $k$ that denotes the number of clusters. Additionally, we are given a set $F$ of cluster centers in the same metric space. The goal is to select a set $C\subseteq F$ of $k$ centers and assign each point in $P$ to a center in $C$, such that the maximum load over all centers is minimized. Here the load of a center is the sum of the distances between it and the points assigned to it. Although clustering/facility location problems have a rich literature, the minimum-load objective is not studied substantially, and hence MLkC has remained a poorly understood problem. More interestingly, the problem is notoriously hard even in some special cases including the one in line metrics as shown by Ahmadian et al. [ACM Trans. Algo. 2018]. They also show APX-hardness of the problem in the plane. On the other hand, the best-known approximation factor for MLkC is $O(k)$, even in the plane. In this work, we study a fair version of MLkC inspired by the work of Chierichetti et al. [NeurIPS, 2017], which generalizes MLkC. Here the input points are colored by one of the $\ell$ colors denoting the group they belong to. MLkC is the special case with $\ell=1$. Considering this problem, we are able to obtain a $3$-approximation in $f(k,\ell)\cdot n^{O(1)}$ time. Also, our scheme leads to an improved $(1 + \epsilon)$-approximation in case of Euclidean norm, and in this case, the running time depends only polynomially on the dimension $d$. Our results imply the same approximations for MLkC with running time $f(k)\cdot n^{O(1)}$, achieving the first constant approximations for this problem in general and Euclidean metric spaces.