An improved fuzzy c-means clustering algorithm with guided filter for Image Segmentation

Guangmei Xu, Jiwen Dong, Jin Zhou, Yingxu Wang, Bozhan Dang, Dong Wang, Lin Wang, Shiyuan Han
{"title":"An improved fuzzy c-means clustering algorithm with guided filter for Image Segmentation","authors":"Guangmei Xu, Jiwen Dong, Jin Zhou, Yingxu Wang, Bozhan Dang, Dong Wang, Lin Wang, Shiyuan Han","doi":"10.1109/SPAC46244.2018.8965448","DOIUrl":null,"url":null,"abstract":"Fuzzy c-means clustering with guided filter (FCM+GF) is an effective method for noisy image segmentation. However, the parameter ε of guided filter in the FCM+GF is set to a fixed value, which weakens the ability of the FCM+GF to partition images with different noise rates. In this paper, an improved fuzzy c-means with guided filter method (FCM+GF_I) is proposed. In our method, a new influence factor ρ is defined to adjust the guidance image. By adjusting the value of ρ, the proposed FCM+GF_I method achieves good performance on different noisy images. Experiments on Brain MR images show the superiority and efficiency of our method.","PeriodicalId":360369,"journal":{"name":"2018 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAC46244.2018.8965448","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Fuzzy c-means clustering with guided filter (FCM+GF) is an effective method for noisy image segmentation. However, the parameter ε of guided filter in the FCM+GF is set to a fixed value, which weakens the ability of the FCM+GF to partition images with different noise rates. In this paper, an improved fuzzy c-means with guided filter method (FCM+GF_I) is proposed. In our method, a new influence factor ρ is defined to adjust the guidance image. By adjusting the value of ρ, the proposed FCM+GF_I method achieves good performance on different noisy images. Experiments on Brain MR images show the superiority and efficiency of our method.
一种改进的带引导滤波的模糊c均值聚类算法用于图像分割
引导滤波模糊c均值聚类(FCM+GF)是一种有效的噪声图像分割方法。然而,FCM+GF中引导滤波器的参数ε设置为固定值,削弱了FCM+GF对不同噪声率图像的分割能力。本文提出了一种改进的模糊c均值制导滤波方法(FCM+GF_I)。在该方法中,定义了一个新的影响因子ρ来调整制导图像。通过调整ρ值,所提出的FCM+GF_I方法在不同的噪声图像上都取得了良好的性能。脑磁共振图像实验证明了该方法的优越性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信