Panoptic-Deeplab-DVA: Improving Panoptic Deeplab with Dual Value Attention and Instance Boundary Aware Regression

Qingfeng Liu, Mostafa El-Khamy
{"title":"Panoptic-Deeplab-DVA: Improving Panoptic Deeplab with Dual Value Attention and Instance Boundary Aware Regression","authors":"Qingfeng Liu, Mostafa El-Khamy","doi":"10.1109/ICIP46576.2022.9897430","DOIUrl":null,"url":null,"abstract":"Panoptic DeepLab is a state-of-the-art framework that has showed good tradeoff between performance and complexity. In this paper, we focus on improving it to increase wide deployment of panoptic segmentation on mobile devices with low complexity. Specifically, we first present a novel Dual Value Attention (DVA) module to enable context information exchange between the semantic segmentation branch and the instance segmentation branch. Second, we further propose a new instance Boundary Aware Regression (iBAR) loss that assigns more emphasis on the instance boundary during instance regression. To assess the effectiveness of our proposed approach, we evaluate the performance on MSCOCO dataset for panoptic segmentation task, to show that our approach can improve upon the state-of-the-art Panoptic DeepLab with both the light-weight backbone network MobileNetV3 and the heavy-weight backbone network HRNetV2.","PeriodicalId":387035,"journal":{"name":"2022 IEEE International Conference on Image Processing (ICIP)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP46576.2022.9897430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Panoptic DeepLab is a state-of-the-art framework that has showed good tradeoff between performance and complexity. In this paper, we focus on improving it to increase wide deployment of panoptic segmentation on mobile devices with low complexity. Specifically, we first present a novel Dual Value Attention (DVA) module to enable context information exchange between the semantic segmentation branch and the instance segmentation branch. Second, we further propose a new instance Boundary Aware Regression (iBAR) loss that assigns more emphasis on the instance boundary during instance regression. To assess the effectiveness of our proposed approach, we evaluate the performance on MSCOCO dataset for panoptic segmentation task, to show that our approach can improve upon the state-of-the-art Panoptic DeepLab with both the light-weight backbone network MobileNetV3 and the heavy-weight backbone network HRNetV2.
Panoptic-Deeplab- dva:基于双值注意和实例边界感知回归的Panoptic Deeplab改进
Panoptic DeepLab是一个最先进的框架,在性能和复杂性之间取得了很好的平衡。在本文中,我们着重于改进它,以增加在低复杂度的移动设备上广泛部署的全光分割。具体来说,我们首先提出了一种新的双值注意(Dual Value Attention, DVA)模块来实现语义分割分支和实例分割分支之间的上下文信息交换。其次,我们进一步提出了一种新的实例边界感知回归(iBAR) loss,该loss在实例回归过程中更加强调实例边界。为了评估我们提出的方法的有效性,我们在MSCOCO数据集上评估了用于全光分割任务的性能,以表明我们的方法可以在最先进的panoptic DeepLab上改进轻量级骨干网MobileNetV3和重型骨干网HRNetV2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信