A Partitioning Fuzzy Clustering Algorithm for Symbolic Interval Data based on Adaptive Mahalanobis Distances

Camilo P. Tenorio, F. D. Carvalho, Julio T. Pimentel
{"title":"A Partitioning Fuzzy Clustering Algorithm for Symbolic Interval Data based on Adaptive Mahalanobis Distances","authors":"Camilo P. Tenorio, F. D. Carvalho, Julio T. Pimentel","doi":"10.1109/HIS.2007.33","DOIUrl":null,"url":null,"abstract":"The recording of symbolic interval data has become a common practice with the recent advances in database technologies. This paper introduces a fuzzy clustering algorithm to partitioning symbolic interval data. The proposed method furnish a fuzzy partition and a prototype (a vector of intervals) for each cluster by optimizing an adequacy criterion that measures the fitting between the clusters and their representatives. To compare symbolic interval data, the method use a suitable adaptive Mahalanobis disance defined on vectors of intervals. Experiments with real and synthetic symbolic interval data sets showed the usefulness of the proposed method.","PeriodicalId":359991,"journal":{"name":"7th International Conference on Hybrid Intelligent Systems (HIS 2007)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"7th International Conference on Hybrid Intelligent Systems (HIS 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIS.2007.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The recording of symbolic interval data has become a common practice with the recent advances in database technologies. This paper introduces a fuzzy clustering algorithm to partitioning symbolic interval data. The proposed method furnish a fuzzy partition and a prototype (a vector of intervals) for each cluster by optimizing an adequacy criterion that measures the fitting between the clusters and their representatives. To compare symbolic interval data, the method use a suitable adaptive Mahalanobis disance defined on vectors of intervals. Experiments with real and synthetic symbolic interval data sets showed the usefulness of the proposed method.
基于自适应Mahalanobis距离的符号区间数据分区模糊聚类算法
随着数据库技术的发展,符号间隔数据的记录已经成为一种普遍的做法。介绍了一种用于符号区间数据划分的模糊聚类算法。该方法通过优化衡量聚类与其代表之间拟合的充分性准则,为每个聚类提供模糊划分和原型(区间向量)。为了比较符号区间数据,该方法在区间向量上定义合适的自适应马氏距离。在真实和合成符号区间数据集上的实验表明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信