Li-ion Battery Aging Estimation Using Particle Swarm Optimization Based Feedforward Neural Network

N. Junhuathon, Guntinan Sakunphaisal, K. Chayakulkheeree
{"title":"Li-ion Battery Aging Estimation Using Particle Swarm Optimization Based Feedforward Neural Network","authors":"N. Junhuathon, Guntinan Sakunphaisal, K. Chayakulkheeree","doi":"10.1109/ICPEI49860.2020.9431432","DOIUrl":null,"url":null,"abstract":"Battery Management System (BMS) is a critical component in modern electrical technology. The exact knowledge of the state of health and capacity impact is useful for the estimation and control strategy of battery. Therefore, this paper proposed the particle swarm optimization-based Feedforward Neural Network (PSO-FNN) for Battery Aging Estimate (BAE). This PSO is used to optimize the weights and biases of the FNN. For validating the proposed method, conventional FNN was simulated with battery data sets provided by NASA Prognostics Center of Excellence (PCoE) and compared to the proposed method. The simulation results show the performance of PSO-FNN is noticeably better in relatively volatile systems.","PeriodicalId":342582,"journal":{"name":"2020 International Conference on Power, Energy and Innovations (ICPEI)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 International Conference on Power, Energy and Innovations (ICPEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPEI49860.2020.9431432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Battery Management System (BMS) is a critical component in modern electrical technology. The exact knowledge of the state of health and capacity impact is useful for the estimation and control strategy of battery. Therefore, this paper proposed the particle swarm optimization-based Feedforward Neural Network (PSO-FNN) for Battery Aging Estimate (BAE). This PSO is used to optimize the weights and biases of the FNN. For validating the proposed method, conventional FNN was simulated with battery data sets provided by NASA Prognostics Center of Excellence (PCoE) and compared to the proposed method. The simulation results show the performance of PSO-FNN is noticeably better in relatively volatile systems.
基于粒子群前馈神经网络的锂离子电池老化估计
电池管理系统(BMS)是现代电气技术的重要组成部分。准确了解电池的健康状态和容量影响对电池的估计和控制策略有重要意义。为此,本文提出了基于粒子群优化的前馈神经网络(PSO-FNN)用于电池老化估计。该粒子群用于优化模糊神经网络的权重和偏置。为了验证提出的方法,用NASA卓越预测中心(PCoE)提供的电池数据集模拟了传统的FNN,并与提出的方法进行了比较。仿真结果表明,PSO-FNN在相对易变的系统中具有较好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信