An improved self-organizing map for bugs data clustering

Attika Ahmed, R. Ghazali
{"title":"An improved self-organizing map for bugs data clustering","authors":"Attika Ahmed, R. Ghazali","doi":"10.1109/I2CACIS.2016.7885303","DOIUrl":null,"url":null,"abstract":"In software projects, there is a data repository which contains the bug reports. These bugs are required to carefully analyse and resolve the problem. Handling these bugs humanly is extremely time consuming process, and it can result the deleying in addressing some important bugs resolutions. To overcome this problem, researchers have introduced many techniques. One of the commonly used algorithm is K-means, which is considered as the simplest supervised learning algorithm for clustering, yet it tends to produce smaller number of clusters, while considering the unsupervised learning algorithms, Self-Organizing Map (SOM) considers the equally compatible algorithm for clustering, as both the algorithms are closely related but differently used in data mining. This paper attempts to provide a comparative analysis of both the clustering algorithms and for attaining the results, a series of experiment has been conducted using Mozilla bugs data set. Based on the results, this paper proposes a new algorithm which is improved SOM using Jaccard New Measure. The test result has proved that the proposed new method produced better accuracy.","PeriodicalId":399080,"journal":{"name":"2016 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Automatic Control and Intelligent Systems (I2CACIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I2CACIS.2016.7885303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In software projects, there is a data repository which contains the bug reports. These bugs are required to carefully analyse and resolve the problem. Handling these bugs humanly is extremely time consuming process, and it can result the deleying in addressing some important bugs resolutions. To overcome this problem, researchers have introduced many techniques. One of the commonly used algorithm is K-means, which is considered as the simplest supervised learning algorithm for clustering, yet it tends to produce smaller number of clusters, while considering the unsupervised learning algorithms, Self-Organizing Map (SOM) considers the equally compatible algorithm for clustering, as both the algorithms are closely related but differently used in data mining. This paper attempts to provide a comparative analysis of both the clustering algorithms and for attaining the results, a series of experiment has been conducted using Mozilla bugs data set. Based on the results, this paper proposes a new algorithm which is improved SOM using Jaccard New Measure. The test result has proved that the proposed new method produced better accuracy.
改进的自组织映射,用于bug数据聚类
在软件项目中,有一个包含bug报告的数据存储库。这些bug需要仔细分析和解决问题。人工处理这些bug是一个非常耗时的过程,并且可能导致在解决一些重要的bug解决方案时出现延迟。为了克服这个问题,研究人员引入了许多技术。其中一种常用的算法是K-means,它被认为是最简单的聚类监督学习算法,但它往往产生较少的聚类,而在考虑无监督学习算法时,自组织映射(SOM)考虑同样兼容的聚类算法,因为这两种算法密切相关,但在数据挖掘中使用的方法不同。本文试图对这两种聚类算法进行比较分析,并使用Mozilla bug数据集进行了一系列实验,以获得结果。在此基础上,提出了一种利用Jaccard新测度改进SOM的新算法。试验结果表明,该方法具有较好的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信