VIM: A Big Data Analytics Tool for Data Visualization and Knowledge Mining

Sk. Shariful Islam Arafat, Md Shakil Hossain, Md. Mahmudul Hasan, S. M. A. Imam, Md. Mofijul Islam, Sanjay Saha, Swakkhar Shatabda, Tamanna Islam Juthi
{"title":"VIM: A Big Data Analytics Tool for Data Visualization and Knowledge Mining","authors":"Sk. Shariful Islam Arafat, Md Shakil Hossain, Md. Mahmudul Hasan, S. M. A. Imam, Md. Mofijul Islam, Sanjay Saha, Swakkhar Shatabda, Tamanna Islam Juthi","doi":"10.1109/WIECON-ECE.2017.8468939","DOIUrl":null,"url":null,"abstract":"With the advancement of Information technologies and applications, a copious amount of data is generated, which attracts both the research community to utilize this information for extracting knowledge and the industry for developing the knowledge-based system. Visualization of data, pattern mining from datasets and analyzing data drift for the different features are three highly used applications of machine learning and data science fields. A generic web-based tool integrated with such features will provide prodigious support for preprocessing the dataset and thus extracting accurate information. In this work, we propose such a data visualization tool, named VIM, which is a web-based comprehensive tool for generic data visualization, data preprocessing and mining suitable knowledge with drift analysis of data. Given a dataset, it can envisage the distribution of data with convenient statistical diagrams for different selected features. Moreover, users can employ VIM to generate association rules by selecting multiple features. We have developed VIM using Python Django framework and GraphLab library. We have deployed this tool to make this publicly usable, which can be accessed at http://210.4.73.237:9999/","PeriodicalId":188031,"journal":{"name":"2017 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International WIE Conference on Electrical and Computer Engineering (WIECON-ECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIECON-ECE.2017.8468939","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

With the advancement of Information technologies and applications, a copious amount of data is generated, which attracts both the research community to utilize this information for extracting knowledge and the industry for developing the knowledge-based system. Visualization of data, pattern mining from datasets and analyzing data drift for the different features are three highly used applications of machine learning and data science fields. A generic web-based tool integrated with such features will provide prodigious support for preprocessing the dataset and thus extracting accurate information. In this work, we propose such a data visualization tool, named VIM, which is a web-based comprehensive tool for generic data visualization, data preprocessing and mining suitable knowledge with drift analysis of data. Given a dataset, it can envisage the distribution of data with convenient statistical diagrams for different selected features. Moreover, users can employ VIM to generate association rules by selecting multiple features. We have developed VIM using Python Django framework and GraphLab library. We have deployed this tool to make this publicly usable, which can be accessed at http://210.4.73.237:9999/
VIM:用于数据可视化和知识挖掘的大数据分析工具
随着资讯科技和应用的发展,产生了大量的数据,这吸引了研究界利用这些信息来提取知识,也吸引了工业界开发以知识为基础的系统。数据可视化、数据集模式挖掘和分析不同特征的数据漂移是机器学习和数据科学领域的三个高度使用的应用。集成了这些特性的基于web的通用工具将为数据集的预处理提供巨大的支持,从而提取准确的信息。在这项工作中,我们提出了这样一个数据可视化工具,命名为VIM,它是一个基于web的综合工具,用于通用数据可视化,数据预处理和挖掘适合的知识与数据漂移分析。给定一个数据集,它可以用方便的统计图为不同的选择特征设想数据的分布。此外,用户还可以通过选择多个特征来使用VIM生成关联规则。我们使用Python Django框架和GraphLab库开发了VIM。我们已经部署了这个工具,使其公开可用,可以访问http://210.4.73.237:9999/
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信