Eser Kandogan, R. Krishnamurthy, S. Raghavan, Shivakumar Vaithyanathan, Huaiyu Zhu
{"title":"Avatar semantic search: a database approach to information retrieval","authors":"Eser Kandogan, R. Krishnamurthy, S. Raghavan, Shivakumar Vaithyanathan, Huaiyu Zhu","doi":"10.1145/1142473.1142591","DOIUrl":null,"url":null,"abstract":"We present Avatar Semantic Search, a prototype search engine that exploits annotations in the context of classical keyword search. The process of annotations is accomplished offline by using high-precision information extraction techniques to extract facts, con-cepts, and relationships from text. These facts and concepts are represented and indexed in a structured data store. At runtime, keyword queries are interpreted in the context of these extracted facts and converted into one or more precise queries over the structured store. In this demonstration we describe the overall architecture of the Avatar Semantic Search engine. We also demonstrate the superiority of the AVATAR approach over traditional keyword search engines using Enron email data set and a blog corpus.","PeriodicalId":416090,"journal":{"name":"Proceedings of the 2006 ACM SIGMOD international conference on Management of data","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"97","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2006 ACM SIGMOD international conference on Management of data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1142473.1142591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 97
Abstract
We present Avatar Semantic Search, a prototype search engine that exploits annotations in the context of classical keyword search. The process of annotations is accomplished offline by using high-precision information extraction techniques to extract facts, con-cepts, and relationships from text. These facts and concepts are represented and indexed in a structured data store. At runtime, keyword queries are interpreted in the context of these extracted facts and converted into one or more precise queries over the structured store. In this demonstration we describe the overall architecture of the Avatar Semantic Search engine. We also demonstrate the superiority of the AVATAR approach over traditional keyword search engines using Enron email data set and a blog corpus.