Fourier neural networks as function approximators and differential equation solvers

M. Ngom, O. Marin
{"title":"Fourier neural networks as function approximators and differential equation solvers","authors":"M. Ngom, O. Marin","doi":"10.1002/sam.11531","DOIUrl":null,"url":null,"abstract":"We present a Fourier neural network (FNN) that can be mapped directly to the Fourier decomposition. The choice of activation and loss function yields results that replicate a Fourier series expansion closely while preserving a straightforward architecture with a single hidden layer. The simplicity of this network architecture facilitates the integration with any other higher‐complexity networks, at a data pre‐ or postprocessing stage. We validate this FNN on naturally periodic smooth functions and on piecewise continuous periodic functions. We showcase the use of this FNN for modeling or solving partial differential equations with periodic boundary conditions. The main advantages of the current approach are the validity of the solution outside the training region, interpretability of the trained model, and simplicity of use.","PeriodicalId":342679,"journal":{"name":"Statistical Analysis and Data Mining: The ASA Data Science Journal","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Analysis and Data Mining: The ASA Data Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sam.11531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

We present a Fourier neural network (FNN) that can be mapped directly to the Fourier decomposition. The choice of activation and loss function yields results that replicate a Fourier series expansion closely while preserving a straightforward architecture with a single hidden layer. The simplicity of this network architecture facilitates the integration with any other higher‐complexity networks, at a data pre‐ or postprocessing stage. We validate this FNN on naturally periodic smooth functions and on piecewise continuous periodic functions. We showcase the use of this FNN for modeling or solving partial differential equations with periodic boundary conditions. The main advantages of the current approach are the validity of the solution outside the training region, interpretability of the trained model, and simplicity of use.
傅里叶神经网络作为函数逼近器和微分方程求解器
我们提出了一个可以直接映射到傅里叶分解的傅里叶神经网络(FNN)。激活函数和损失函数的选择产生的结果可以近似地复制傅立叶级数展开,同时保留具有单个隐藏层的简单结构。这种网络架构的简单性有助于在数据预处理或后处理阶段与任何其他更高复杂性的网络集成。我们在自然周期平滑函数和分段连续周期函数上验证了该神经网络。我们展示了使用这种FNN来建模或求解具有周期边界条件的偏微分方程。当前方法的主要优点是解在训练区域外的有效性、训练模型的可解释性和使用简单性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信