Semi-Supervised Learning and Graph Neural Networks for Fake News Detection

Adrien Benamira, Benjamin Devillers, Etienne Lesot, Ayush Ray, Manal Saadi, Fragkiskos D. Malliaros
{"title":"Semi-Supervised Learning and Graph Neural Networks for Fake News Detection","authors":"Adrien Benamira, Benjamin Devillers, Etienne Lesot, Ayush Ray, Manal Saadi, Fragkiskos D. Malliaros","doi":"10.1145/3341161.3342958","DOIUrl":null,"url":null,"abstract":"Social networks have become the main platforms for information dissemination. Nevertheless, due to the increasing number of users, social media platforms tend to be highly vulnerable to the propagation of disinformation - making the detection of fake news a challenging task. In this work, we focus on content-based methods for detecting fake news - casting the problem to a binary text classification one (an article corresponds to either fake news or not). In particular, our work proposes a graph-based semi-supervised fake news detection method based on graph neural networks. The experimental results indicate that the proposed methodology achieves better performance compared to traditional classification techniques, especially when trained on limited number of labeled articles 11Our code is publicly available at: https://github.com/bdvllrs/misinformation-detection-tensor-embeddings..","PeriodicalId":403360,"journal":{"name":"2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"72","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3341161.3342958","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 72

Abstract

Social networks have become the main platforms for information dissemination. Nevertheless, due to the increasing number of users, social media platforms tend to be highly vulnerable to the propagation of disinformation - making the detection of fake news a challenging task. In this work, we focus on content-based methods for detecting fake news - casting the problem to a binary text classification one (an article corresponds to either fake news or not). In particular, our work proposes a graph-based semi-supervised fake news detection method based on graph neural networks. The experimental results indicate that the proposed methodology achieves better performance compared to traditional classification techniques, especially when trained on limited number of labeled articles 11Our code is publicly available at: https://github.com/bdvllrs/misinformation-detection-tensor-embeddings..
半监督学习和图神经网络用于假新闻检测
社交网络已经成为信息传播的主要平台。然而,由于用户数量的不断增加,社交媒体平台往往极易受到虚假信息传播的影响,这使得假新闻的检测成为一项具有挑战性的任务。在这项工作中,我们专注于基于内容的检测假新闻的方法-将问题转换为二进制文本分类问题(一篇文章对应于假新闻或非假新闻)。特别地,我们的工作提出了一种基于图神经网络的基于图的半监督假新闻检测方法。实验结果表明,与传统的分类技术相比,所提出的方法取得了更好的性能,特别是在有限数量的标记文章上进行训练时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信