What's in it for me?: Augmenting Recommended Learning Resources with Navigable Annotations

Sahan Bulathwela, S. Kreitmayer, M. Pérez-Ortiz
{"title":"What's in it for me?: Augmenting Recommended Learning Resources with Navigable Annotations","authors":"Sahan Bulathwela, S. Kreitmayer, M. Pérez-Ortiz","doi":"10.1145/3379336.3381457","DOIUrl":null,"url":null,"abstract":"This paper introduces an interface that enables the user to quickly identify relevant fragments within multiple long documents. The proposed method relies on a machine-generated layer of annotations that reveals the coverage of topics per fragment and document. To illustrate how the annotations double as a tool for preview as well as navigation, an example application is presented in the form of a personalised learning system that recommends relevant fragments of video lectures according to user's history. Potential implications of this approach for lifelong learning are discussed. We argue that this approach is generally applicable to recommender and information retrieval systems, across multiple knowledge domains and document types.","PeriodicalId":335081,"journal":{"name":"Proceedings of the 25th International Conference on Intelligent User Interfaces Companion","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th International Conference on Intelligent User Interfaces Companion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3379336.3381457","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

This paper introduces an interface that enables the user to quickly identify relevant fragments within multiple long documents. The proposed method relies on a machine-generated layer of annotations that reveals the coverage of topics per fragment and document. To illustrate how the annotations double as a tool for preview as well as navigation, an example application is presented in the form of a personalised learning system that recommends relevant fragments of video lectures according to user's history. Potential implications of this approach for lifelong learning are discussed. We argue that this approach is generally applicable to recommender and information retrieval systems, across multiple knowledge domains and document types.
这对我有什么好处?:用可导航的注释增强推荐的学习资源
本文介绍了一个界面,使用户能够快速识别多个长文档中的相关片段。所提出的方法依赖于机器生成的注释层,该注释层揭示了每个片段和文档的主题覆盖率。为了说明注解既是预览工具又是导航工具,本文以个性化学习系统的形式展示了一个示例应用程序,该系统根据用户的历史记录推荐相关的视频讲座片段。讨论了这种方法对终身学习的潜在影响。我们认为这种方法通常适用于推荐和信息检索系统,跨越多个知识领域和文档类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信