LIUM-MIRACL Participation in the MADAR Arabic Dialect Identification Shared Task

Saméh Kchaou, Fethi Bougares, Lamia Hadrich Belguith
{"title":"LIUM-MIRACL Participation in the MADAR Arabic Dialect Identification Shared Task","authors":"Saméh Kchaou, Fethi Bougares, Lamia Hadrich Belguith","doi":"10.18653/v1/W19-4625","DOIUrl":null,"url":null,"abstract":"This paper describes the joint participation of the LIUM and MIRACL Laboratories at the Arabic dialect identification challenge of the MADAR Shared Task (Bouamor et al., 2019) conducted during the Fourth Arabic Natural Language Processing Workshop (WANLP 2019). We participated to the Travel Domain Dialect Identification subtask. We built several systems and explored different techniques including conventional machine learning methods and deep learning algorithms. Deep learning approaches did not perform well on this task. We experimented several classification systems and we were able to identify the dialect of an input sentence with an F1-score of 65.41% on the official test set using only the training data supplied by the shared task organizers.","PeriodicalId":268163,"journal":{"name":"WANLP@ACL 2019","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"WANLP@ACL 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W19-4625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper describes the joint participation of the LIUM and MIRACL Laboratories at the Arabic dialect identification challenge of the MADAR Shared Task (Bouamor et al., 2019) conducted during the Fourth Arabic Natural Language Processing Workshop (WANLP 2019). We participated to the Travel Domain Dialect Identification subtask. We built several systems and explored different techniques including conventional machine learning methods and deep learning algorithms. Deep learning approaches did not perform well on this task. We experimented several classification systems and we were able to identify the dialect of an input sentence with an F1-score of 65.41% on the official test set using only the training data supplied by the shared task organizers.
LIUM-MIRACL参与MADAR阿拉伯语方言识别共享任务
本文描述了LIUM和MIRACL实验室在第四届阿拉伯自然语言处理研讨会(WANLP 2019)期间共同参与MADAR共享任务的阿拉伯方言识别挑战(Bouamor等人,2019)。我们参加了旅游领域方言识别子任务。我们建立了几个系统,并探索了不同的技术,包括传统的机器学习方法和深度学习算法。深度学习方法在这个任务上表现不佳。我们实验了几种分类系统,仅使用共享任务组织者提供的训练数据,我们就能够在官方测试集上识别输入句子的方言,f1得分为65.41%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信