A Novel Feature Extraction Scheme for Myoelectric Signals Classification Using Higher Order Statistics

K. Nazarpour, A. Sharafat, S. Firoozabadi
{"title":"A Novel Feature Extraction Scheme for Myoelectric Signals Classification Using Higher Order Statistics","authors":"K. Nazarpour, A. Sharafat, S. Firoozabadi","doi":"10.1109/CNE.2005.1419615","DOIUrl":null,"url":null,"abstract":"We present a novel feature extraction scheme for surface myoelectric signal (sMES) classification. We employ a multilayer perceptron (MLP) in which the feature vector is a mix of the second-, the third-, and the fourth order cumulants of the sMES stationary segments obtained from two recording channels. To reduce the number of features to a sufficient minimum, while retaining their discriminatory information, we employ the method of principle components analysis (PCA). The detected sMES is used to classify four upper limb primitive motions, i.e., elbow flexion (F), elbow extension (E), wrist supination (S), and wrist pronation (P). Simulation results indicate a substantial reduction in the required computations to achieve similar results as compared to existing methods","PeriodicalId":113815,"journal":{"name":"Conference Proceedings. 2nd International IEEE EMBS Conference on Neural Engineering, 2005.","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Proceedings. 2nd International IEEE EMBS Conference on Neural Engineering, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNE.2005.1419615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

We present a novel feature extraction scheme for surface myoelectric signal (sMES) classification. We employ a multilayer perceptron (MLP) in which the feature vector is a mix of the second-, the third-, and the fourth order cumulants of the sMES stationary segments obtained from two recording channels. To reduce the number of features to a sufficient minimum, while retaining their discriminatory information, we employ the method of principle components analysis (PCA). The detected sMES is used to classify four upper limb primitive motions, i.e., elbow flexion (F), elbow extension (E), wrist supination (S), and wrist pronation (P). Simulation results indicate a substantial reduction in the required computations to achieve similar results as compared to existing methods
一种基于高阶统计量的肌电信号分类特征提取方法
提出了一种用于表面肌电信号分类的特征提取方法。我们采用多层感知器(MLP),其中特征向量是从两个记录通道获得的中小企业固定段的二阶、三阶和四阶累积量的混合。为了将特征数量减少到足够少,同时保留其区别信息,我们采用了主成分分析(PCA)方法。检测到的sme用于对四种上肢原始运动进行分类,即肘关节屈曲(F),肘关节伸展(E),手腕旋后(S)和手腕旋前(P)。仿真结果表明,与现有方法相比,实现类似结果所需的计算量大大减少
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信