{"title":"The categories of lattice-valued maps, Equalities, Free objects, and $mathcal C$-reticulation","authors":"A. K. Feizabadi","doi":"10.29252/CGASA.11.1.93","DOIUrl":null,"url":null,"abstract":"In this paper, we study the concept of $mathcal C$-reticulation for the category $mathcal C$ whose objects are lattice-valued maps. The relation between the free objects in $mathcal C$ and the $mathcal C$-reticulation of rings and modules is discussed. Also, a method to construct $mathcal C$-reticulation is presented, in the case where $mathcal C$ is equational. Some relations between the concepts reticulation and satisfying equalities and inequalities are studied.","PeriodicalId":170235,"journal":{"name":"Categories and General Algebraic Structures with Application","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Categories and General Algebraic Structures with Application","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29252/CGASA.11.1.93","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we study the concept of $mathcal C$-reticulation for the category $mathcal C$ whose objects are lattice-valued maps. The relation between the free objects in $mathcal C$ and the $mathcal C$-reticulation of rings and modules is discussed. Also, a method to construct $mathcal C$-reticulation is presented, in the case where $mathcal C$ is equational. Some relations between the concepts reticulation and satisfying equalities and inequalities are studied.