Examining the Performance of MATLAB’s Matrix Capabilities, Testing on Euler’s Method Applied on the Diffusion Equation

Dániel Koics, K. Nehéz, E. Kovács
{"title":"Examining the Performance of MATLAB’s Matrix Capabilities, Testing on Euler’s Method Applied on the Diffusion Equation","authors":"Dániel Koics, K. Nehéz, E. Kovács","doi":"10.32968/psaie.2022.3.9","DOIUrl":null,"url":null,"abstract":"When one develops, tests and uses numerical methods to solve a differential equation, the performance of the method depends on the concrete way how the method is implemented and coded. In this tentative work, we solve the linear diffusion equation by the simplest explicit Euler method implemented with for loops as well as the built-in matrix operations of MATLAB. We obtain that the for loop performs better in one space dimension, but the matrix operations are faster in two space dimensions.","PeriodicalId":117509,"journal":{"name":"Production Systems and Information Engineering","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Production Systems and Information Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32968/psaie.2022.3.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

When one develops, tests and uses numerical methods to solve a differential equation, the performance of the method depends on the concrete way how the method is implemented and coded. In this tentative work, we solve the linear diffusion equation by the simplest explicit Euler method implemented with for loops as well as the built-in matrix operations of MATLAB. We obtain that the for loop performs better in one space dimension, but the matrix operations are faster in two space dimensions.
检测MATLAB的矩阵性能,测试欧拉方法在扩散方程中的应用
当一个人开发、测试和使用数值方法来求解微分方程时,该方法的性能取决于该方法如何实现和编码的具体方式。在这个尝试性的工作中,我们用最简单的显式欧拉方法和MATLAB的内置矩阵运算实现了线性扩散方程。我们得到了for循环在一维空间中的性能更好,而矩阵运算在二维空间中的速度更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信