{"title":"Study of a new design of a solar adsorption sensor for a refrigeration system","authors":"H. E. Kalkha, A. Mimet","doi":"10.1145/3286606.3286858","DOIUrl":null,"url":null,"abstract":"Morocco's climate encompasses a wide range of weather conditions over a broad geographic scale that can improve the performance of the solar adsorption refrigeration system. Solar energy technologies have attracted worldwide attention because of their non-polluting nature. Also, Solar refrigeration based on adsorption cycles is simple, silent and adaptable to small, medium or large systems. Application potentials include storage of vaccines for immunization against deadly diseases, conservation of food products for future use and ice making. This paper illustrates a new design to improve the performance of the solar adsorption machine to achieve a good thermal efficiency with an emission of approximately zero CO2. The mechanism of this design is based on dual phases: desorption and adsorption. The new solar collector will have to convert solar energy into heat and provide the effective temperature for a longer period of time than that obtained by a plan solar collector.","PeriodicalId":416459,"journal":{"name":"Proceedings of the 3rd International Conference on Smart City Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Conference on Smart City Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3286606.3286858","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Morocco's climate encompasses a wide range of weather conditions over a broad geographic scale that can improve the performance of the solar adsorption refrigeration system. Solar energy technologies have attracted worldwide attention because of their non-polluting nature. Also, Solar refrigeration based on adsorption cycles is simple, silent and adaptable to small, medium or large systems. Application potentials include storage of vaccines for immunization against deadly diseases, conservation of food products for future use and ice making. This paper illustrates a new design to improve the performance of the solar adsorption machine to achieve a good thermal efficiency with an emission of approximately zero CO2. The mechanism of this design is based on dual phases: desorption and adsorption. The new solar collector will have to convert solar energy into heat and provide the effective temperature for a longer period of time than that obtained by a plan solar collector.